文本相似度计算-Levenshtein

参见网址http://www.merriampark.com/ld.htm#JAVA


import java.util.BitSet;

public class Distance {

	
	public static void main(String[] args) {
		Distance distance = new Distance() ;
		int i = distance.LD("gttttl", "gambol") ;
		System.out.println(i);
	}
	// ****************************
	// Get minimum of three values
	// ****************************

	private int Minimum(int a, int b, int c) {
		int mi;

		mi = a;
		if (b < mi) {
			mi = b;
		}
		if (c < mi) {
			mi = c;
		}
		return mi;

	}

	// *****************************
	// Compute Levenshtein distance
	// *****************************

	public int LD(String s, String t) {
		//构建一个二维数据
		int d[][]; // matrix
		//s的长度
		int n; // length of s
		//t的长度
		int m; // length of t
		//s的偏移量
		int i; // iterates through s
		//t的偏移量
		int j; // iterates through t
		//s偏移量所在的char
		char s_i; // ith character of s
		//t偏移量所在的char
		char t_j; // jth character of t
		//临时变量对比差值
		int cost; // cost

		// Step 1

		n = s.length();
		m = t.length();
		//当n为0时.则变化为m所有的值
		if (n == 0) {
			return m;
		}
		//同上
		if (m == 0) {
			return n;
		}
		
		d = new int[n + 1][m + 1];

		// Step 2 将数组首行首列添加内容.为当前行号列号
		
		for (i = 0; i <= n; i++) {
			d[i][0] = i;
		}

		for (j = 0; j <= m; j++) {
			d[0][j] = j;
		}

		// Step 3

		for (i = 1; i <= n; i++) {

			s_i = s.charAt(i - 1);

			// Step 4
			//判断i位置的值和 t的每个字的差值
			for (j = 1; j <= m; j++) {

				t_j = t.charAt(j - 1);

				// Step 5
				if (s_i == t_j) {
					cost = 0;
				} else {
					cost = 1;
				}

				// Step 6
				//在数组的
				d[i][j] = Minimum(d[i - 1][j] + 1, d[i][j - 1] + 1,
						d[i - 1][j - 1] + cost);

			}

		}

		// Step 7
		//取得最右面最下面的值就是文本的想速度了
		return d[n][m];

	}

}





都加注释了....不解释了..


This section shows how the Levenshtein distance is computed when the source string is "GUMBO" and the target string is "GAMBOL".
Steps 1 and 2
    G U M B O
  0 1 2 3 4 5
G 1          
A 2          
M 3          
B 4          
O 5          
L 6          

Steps 3 to 6 When i = 1
    G U M B O
  0 1 2 3 4 5
G 1 0        
A 2 1        
M 3 2        
B 4 3        
O 5 4        
L 6 5        

Steps 3 to 6 When i = 2
    G U M B O
  0 1 2 3 4 5
G 1 0 1      
A 2 1 1      
M 3 2 2      
B 4 3 3      
O 5 4 4      
L 6 5 5      

Steps 3 to 6 When i = 3
    G U M B O
  0 1 2 3 4 5
G 1 0 1 2    
A 2 1 1 2    
M 3 2 2 1    
B 4 3 3 2    
O 5 4 4 3    
L 6 5 5 4    

Steps 3 to 6 When i = 4
    G U M B O
  0 1 2 3 4 5
G 1 0 1 2 3  
A 2 1 1 2 3  
M 3 2 2 1 2  
B 4 3 3 2 1  
O 5 4 4 3 2  
L 6 5 5 4 3  

Steps 3 to 6 When i = 5
    G U M B O
  0 1 2 3 4 5
G 1 0 1 2 3 4
A 2 1 1 2 3 4
M 3 2 2 1 2 3
B 4 3 3 2 1 2
O 5 4 4 3 2 1
L 6 5 5 4 3 2

Step 7
The distance is in the lower right hand corner of the matrix, i.e. 2. This corresponds to our intuitive realization that "GUMBO" can be transformed into "GAMBOL" by substituting "A" for "U" and adding "L" (one substitution and 1 insertion = 2 changes).

你可能感兴趣的:(文本相似度)