- 深度学习--自监督学习
Ambition_LAO
深度学习
自监督学习是一种无需大量人工标注的数据驱动方法,在生成模型中应用广泛。自监督学习通过利用数据中的固有结构或属性创建“伪标签”,使模型在没有人工标签的情况下进行学习。这种方法既提高了模型的训练效率,又降低了对标注数据的依赖。概念自监督学习:自监督学习是一种半监督学习的形式,模型通过从未标注的数据中创建自己的监督信号来进行学习。常见的方法包括通过预测数据的一部分来学习(例如,给定图像的部分,预测其余部
- 机器学习、深度学习、神经网络之间的关系
你好,工程师
AI机器学习
机器学习(MachineLearning)、深度学习(DeepLearning)和神经网络(NeuralNetworks)之间存在密切的关系,它们可以被看作是一种逐层递进的关系。下面简要介绍它们之间的关系:机器学习(MachineLearning):机器学习是一种人工智能的分支,关注如何通过数据让计算机系统从经验中学习,提高性能。机器学习算法可以分为监督学习、无监督学习、半监督学习和强化学习等不同
- 深度学习——概念引入
韶光流年都束之高阁
深度学习日记深度学习人工智能职场和发展
深度学习深度学习简介深度学习分类根据网络结构划分:循环神经网络卷积神经网络根据学习方式划分:监督学习无监督学习半监督学习根据应用领域划分:计算机视觉自然语言处理语音识别生物信息学深度学习简介深度学习(DeepLearning,DL)是机器学习领域中的一个新的研究方向,主要是通过学习样本数据的内在规律和表示层次,让机器能够具有类似于人类的分析学习能力。深度学习的最终目标是让机器能够识别和解释各种数据
- 【论文精读】SimCLR2
None-D
自监督学习机器学习人工智能deeplearning计算机视觉算法深度学习
摘要本文提出了一个半监督学习框架,包括三个步骤:无监督或自监督的预训练;有监督微调;使用未标记数据进行蒸馏。具体改进有:发现在半监督学习(无监督预训练+有监督微调)中,对于较大的模型只需采用少量有标签数据就可实现良好的结果证明了SimCLR中用于半监督学习的卷积层之后非线性变换(投影头)的重要性。更深的投影头能提高分类线性评估指标,也能提高从投影头的中间层进行微调时的半监督性能对于特定目标,过大的
- 半监督学习(主要伪标签方法)
拔牙的萌萌鼠
机器学习与深度学习学习机器学习深度学习
半监督学习1.引言应用场景:存在少量的有标签样本和大量的无标签样本的场景。在此应用场景下,通常标注数据是匮乏的,成本高的,难以获取的,与之相对应的是却存在大量的无标注数据。半监督学习的假设:决策边界应避开较高密度的区域。利用未有标记的样本来训练一个比仅使用有标记的样本可以获得的性能更好的模型1.1半监督学习方法半监督学习方法的分类:一致性规范化/一致性训练:对未标注数据进行扰动,两者的预测不存在显
- 为什么在半监督中的无监督阶段CE常常配合置信度使用而MSE通常不会
UndefindX
人工智能
在半监督学习中,结合无监督损失(如交叉熵(CE)损失)和置信度阈值的策略主要用于确保模型从高质量、高置信度的伪标签中学习。这种方法特别适用于分类问题,其中CE损失直接作用于模型的预测类别概率和目标(真实或伪)标签之间。使用置信度阈值可以帮助模型专注于那些它最有可能正确分类的样本,从而提高学习的效率和准确性,减少错误标签的负面影响。对于均方误差(MSE)损失,在某些情况下,其使用方式可能不同,原因如
- 论文阅读_对比学习_SimCLR
xieyan0811
介绍英文题目:ASimpleFrameworkforContrastiveLearningofVisualRepresentations中文题目:视觉表征对比学习的简单框架论文地址:https://arxiv.org/abs/2002.05709v2领域:深度学习,知识表示,半监督学习,对比学习发表时间:2020作者:TingChen,Hinton团队,GoogleResearch出处:ICML被
- 隐私计算技术创新赋能金融数字化转型
岛屿旅人
网络安全金融运维大数据网络安全web安全网络安全
文章目录前言一、金融数据要素流通和价值发挥面临的挑战二、隐私计算技术助推金融场景建设向纵深发展(一)基于可验证秘密共享算法的跨机构数据联合统计(二)基于联邦半监督学习的沉睡客户挖掘模型(三)基于跨域数据校验算法的客户信息准确性验证(四)基于异构隐私计算平台互联互通标准进行跨平台的连通三、未来展望前言近年来,我国大力推动以数据为关键要素的数字经济发展,使得数据成为推动社会进步和经济增长的重要资源和要
- 【自然语言处理】微调 Fine-Tuning 各种经典方法的概念汇总
溢流眼泪
【科研】自然语言处理人工智能
【自然语言处理】微调Fine-Tuning各种经典方法的概念汇总前言请看此微调Fine-TuningSFT监督微调(SupervisedFine-Tuning)概念:监督学习,无监督学习,自监督学习,半监督学习,强化学习的区别概念:下游任务概念:再利用(Repurposing),全参微调(FullFine-Tuning)和部分参数微调(PartialFine-tuning)线性探测(LinearP
- 机器学习---半监督学习简单示例(标签传播算法)
三月七꧁ ꧂
机器学习机器学习
1.使用半监督学习方法LabelSpreading在一个生成的二维数据集上进行标签传播importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.semi_supervisedimportlabel_propagationfromsklearn.datasetsimportmake_circles#generateringwithinnerboxn
- 4种不同类别的机器学习概述
大数据v
人工智能算法机器学习大数据深度学习
导读:机器学习涉及方方面面的内容,包含许多不同类型的算法,其学习方式也不相同。我们将简要介绍这些学习方式及其对应的情景。作者:列奥纳多·德·马尔希(LeonardoDeMarchi),劳拉·米切尔(LauraMitchell)来源:大数据DT(ID:hzdashuju)我们可以根据算法执行学习的方式将它们分为以下不同类别:有监督学习无监督学习半监督学习强化学习01有监督学习有监督学习是目前商业过程
- Improving Language Understanding by Generative Pre-Training
liangdengne_123
深度学习自然语言处理机器学习
今天阅读的是OpenAI2018年的论文《ImprovingLanguageUnderstandingbyGenerativePre-Training》,截止目前共有600多引用。在这篇论文中,作者提出了一种半监督学习方法——GenerativePre-Training(以下简称GPT),GPT采用无监督学习的Pre-training充分利用大量未标注的文本数据,利用监督学习的Fine-tunin
- 2020李宏毅学习笔记—— 10. Semi-supervised Learning(半监督学习)
catcous
机器学习基础课程知识机器学习深度学习人工智能
文章目录摘要1.Introduction1.1WhySemi-supervisedLearning?1.2whySemi-supervisedLearninghelps?2.Semi-supervisedLearningforGenerativeModel2.1SupervisedGenerativeModel2.2Semi-supervisedGenerativeModel3.Low-densi
- 机器学习知识体系总结
qq_36661243
机器学习算法
机器学习知识体系总结什么是机器学习?机器学习体系概括监督学习(SupervisedLearning)十种监督学习方法统计学习方法:模型+策略+学习方法模型策略学习算法无监督学习(UnsupervisedLearning)半监督学习参考所有的知识,无论过去,当下和未来,都可以利用某个单一,通用的学习算法中从数据中获取。–《终极算法》什么是机器学习?机器学习(MachineLearning,ML)是一
- 机器学习---半监督学习(基于分岐的方法)
三月七꧁ ꧂
机器学习机器学习学习人工智能
1.基于分歧的方法与生成式方法、半监督SVM、图半监督学习等基于单学习器利用未标记数据不同,基于分歧的方法(disagreement--basedmethods)使用多学习器,而学习器之间的“分歧”(disagreement)对未标记数据的利用至关重要。1.2协同训练“协同训练”(co-training)[BlumandMitchell,l998]是此类方法的重要代表,它最初是针对“多视图”(mu
- 机器学习---半监督学习(生成式方法)
三月七꧁ ꧂
机器学习机器学习学习人工智能
1.主动学习形式化地看,我们有训练样本集,这l个样本的类别标记(即是否好瓜)已知,称为“有标记”(labeled)样本;此外,还有,这u个样本的类别标记未知(即不知是否好瓜),称为“未标记”(unlabeled)样本。若直接使用传统监督学习技术,则仅有Dl能用于构建模型,Du所包含的信息被浪费了;另一方面,若Dl较小,则由于训练样本不足,学得模型的泛化能力往往不佳。那么,能否在构建模型的过程中将D
- 攻击检测与分类
m0_73803866
分类深度学习人工智能
攻击检测与分类4.2.3.1定义内涵攻击检测与分类的含义是针对各类网络实体及其行为,通过有监督或半监督学习的方式,实现攻击行为的识别,并区分攻击的技战术类型。4.2.3.2技术背景攻击检测与分类是智能化技术与网络安全数据最早结合的应用场景之一。在入侵检测、Web攻击检测、恶意样本及其家族分类、恶意流量检测、恶意邮件识别等多种场景中,为了应对爆炸式增长的数据规模及攻击模式,弥补传统专家规则在时效性、
- PyTorch][chapter 12][李宏毅深度学习][Semi-supervised Linear Methods-1]
明朝百晓生
深度学习pytorch人工智能
这里面介绍半监督学习里面一些常用的方案:K-means,HAC,PCA等目录:K-meansHACPCA一K-means【预置条件】N个样本分成k个簇step1:初始化簇中心点(随机从X中抽取k个样本点作为)Repeat:ForallinX:根据其到(i=1,2,..k)的欧式距离:(代表第n个样本属于第i簇)updatingall问题:不同的初始化参数影响很大.可以通过已打标签的数据集作为,未打
- 第二十八周:文献阅读笔记(弱监督学习)+ pytorch学习
@默然
笔记学习pytorch深度学习人工智能python
第二十八周:文献阅读笔记(弱监督学习)摘要Abstract1.弱监督学习1.1.文献摘要1.2.引言1.3.不完全监督1.3.1.主动学习与半监督学习1.3.2.通过人工干预1.3.3.无需人工干预1.4.不确切的监督1.5.不准确的监督1.6.弱监督学习的创新点2.pytorch学习2.1.对现有模型进行修改2.2.优化器的使用2.3.完整的模型训练套路总结摘要弱监督学习是一种机器学习方法,其训
- 解密人工智能:探索机器学习奥秘
聆风吟_
人工智能机器学习
个人主页:聆风吟系列专栏:网络奇遇记、数据结构少年有梦不应止于心动,更要付诸行动。文章目录前言一.机器学习的定义二.机器学习的发展历程三.机器学习的原理四.机器学习的分类3.1监督学习3.2无监督学习3.3半监督学习3.4强化学习3.5四种分类对比五.机器学习的应用场景六.机器学习的未来发展趋势全文总结前言机器学习(MachineLearning)是一种让计算机通过数据自动学习的技术。它可以让计算
- 【论文笔记】GPT,GPT-2,GPT-3
爱学习的卡比兽
论文NLP论文阅读gpt
参考:GPT,GPT-2,GPT-3【论文精读】GPTTransformer的解码器,仅已知"过去",推导"未来"论文地址:ImprovingLanguageUnderstandingbyGenerativePre-Training半监督学习:无标签数据集预训练模型,有标签数据集微调BERTTransformer的编码器,完形填空,已知“过去”和“未来”,推导中间值论文地址:BERT:Pre-tr
- 第十三章 半监督学习
lammmya
目录一、半监督学习简介二、生成式方法三、半监督SVM四、图半监督学习五、基于分歧的方法六、半监督聚类本章假设给定有标记样本集和未标记样本集,。一、半监督学习简介定义:让学习器不依赖外界交互、自动地利用未标记样本来提升学习性能,就是半监督学习。P294要学习半监督学习,首先我们要了解未标记样本。形式化地看我们有训练样本集,这l个的类别标记(即是否好瓜)已知,称为“有标记样本”;此外,还有,,这u个样
- [PyTorch][chapter 11][李宏毅深度学习][Semi-supervised Learning]
明朝百晓生
深度学习pytorch人工智能
前言:这里面简介一下半监督学习,如何利用未打标签的数据集。重点可以参考一下Graph-basedApproach方案。目录:简介Semi-supervisedLearningforGenerativeModellow-densitySeparationAssumptionEntropy-basedRegularizationsemi-supervisedSVMSmoothnessAssumptio
- 半监督学习笔记:self-training
UQI-LIUWJ
机器学习学习笔记
1半监督学习半监督学习(Semi-SupervisedLearning)是机器学习的一种形式,它结合了监督学习和无监督学习的特点。在半监督学习中,算法同时使用有标签的数据(即已知输出的数据)和无标签的数据(即未知输出的数据)进行训练。这种方法在标签数据稀缺或获取标签成本高昂的情况下特别有用。2self-training算法基本思想是使用已标记的数据来训练一个初始模型,然后使用这个模型对未标记的数据
- 半监督学习
qq_478377515
学习
EfficientTeacher:针对YOLOv5的半监督目标检测实现-知乎CVPR23高分作|半监督目标检测超强SOTA:Consistent-Teacher
- 监督、半监督和无监督学习各自的概念和它们的的区别和联系
qq_45091396
学习
监督学习、半监督学习和无监督学习是机器学习中的三种主要范式,它们有不同的概念、应用和方法。下面是它们的概念、区别和联系:1.监督学习(SupervisedLearning):-概念:监督学习是一种机器学习方法,其中模型通过从已标记的训练数据中学习来进行预测。在监督学习中,训练数据包括输入特征和相应的标签或目标值,模型的任务是学习如何将输入映射到正确的输出。-示例:分类和回归是监督学习的典型示例。例
- 《深度学习之美》读书笔记章三
wenju_song
这一篇文章介绍第三章机器学习的分类。第三章“机器学习”三重门,“中庸之道”趋若人机器学习分为三大类:监督学习,非监督学习,半监督学习3.1监督学习3.1.1感性认知监督学习监督学习:从有标签的训练数据中学习模型,然后给定某个新数组,利用模型预测它的标签。这里的标签可以理解为事物的分类。3.1.2监督学习的形式化描述在监督学习中,根据目标预测变量的类型不同,可以分为回归分析和分类学习。回归分析包括:
- 监督学习、半监督学习、无监督学习三者的本质区别是什么,代表算法有哪些?
神笔馬良
学习算法机器学习
问题描述:监督学习、半监督学习、无监督学习三者的本质区别是什么,代表算法有哪些?问题解答:监督学习、半监督学习和无监督学习是机器学习中的三种主要学习范式,它们的本质区别主要在于训练数据的标签和学习目标。以下是它们的基本概念和代表性算法:监督学习(SupervisedLearning):本质区别:在监督学习中,算法接收带有标签的训练数据,学习输入与输出之间的映射关系。目标是通过学习从输入到输出的映射
- 第三课:GPT
一条大蟒蛇6666
昇思技术公开课学习笔记gpt
文章目录第三课:GPT1、学习总结:GPT出现的原因GPT的方法原理目前存在的问题无监督的预训练优化目标模型结构监督微调课程ppt及代码地址2、学习心得:3、经验分享:4、课程反馈:5、使用MindSpore昇思的体验和反馈:6、未来展望:第三课:GPT1、学习总结:GPT出现的原因未标注的文本数据远多于已标注的文本数据,并且对于不同的下游任务会存在不同的标注方式GPT的方法原理半监督学习基于大量
- Python入门之机器学习(非常详细)篇幅拉满,一般人看不完!
码农必胜客
Python零基础入门python机器学习开发语言
一、什么是机器学习什么是机器学习?机器学习其实就是想让计算机像人一样思考而研发出的计算机理论,目前常用的机器学习有以下几种算法:监督学习supervisedlearning;非监督学习unsupervisedlearning;半监督学习semi-supervisedlearning;强化学习reinforcementlearning;监督学习是不断向计算机提供数据(特征),并告诉计算机对应的值(标
- Enum 枚举
120153216
enum枚举
原文地址:http://www.cnblogs.com/Kavlez/p/4268601.html Enumeration
于Java 1.5增加的enum type...enum type是由一组固定的常量组成的类型,比如四个季节、扑克花色。在出现enum type之前,通常用一组int常量表示枚举类型。比如这样:
public static final int APPLE_FUJI = 0
- Java8简明教程
bijian1013
javajdk1.8
Java 8已于2014年3月18日正式发布了,新版本带来了诸多改进,包括Lambda表达式、Streams、日期时间API等等。本文就带你领略Java 8的全新特性。
一.允许在接口中有默认方法实现
Java 8 允许我们使用default关键字,为接口声明添
- Oracle表维护 快速备份删除数据
cuisuqiang
oracle索引快速备份删除
我知道oracle表分区,不过那是数据库设计阶段的事情,目前是远水解不了近渴。
当前的数据库表,要求保留一个月数据,且表存在大量录入更新,不存在程序删除。
为了解决频繁查询和更新的瓶颈,我在oracle内根据需要创建了索引。但是随着数据量的增加,一个半月数据就要超千万,此时就算有索引,对高并发的查询和更新来说,让然有所拖累。
为了解决这个问题,我一般一个月会进行一次数据库维护,主要工作就是备
- java多态内存分析
麦田的设计者
java内存分析多态原理接口和抽象类
“ 时针如果可以回头,熟悉那张脸,重温嬉戏这乐园,墙壁的松脱涂鸦已经褪色才明白存在的价值归于记忆。街角小店尚存在吗?这大时代会不会牵挂,过去现在花开怎么会等待。
但有种意外不管痛不痛都有伤害,光阴远远离开,那笑声徘徊与脑海。但这一秒可笑不再可爱,当天心
- Xshell实现Windows上传文件到Linux主机
被触发
windows
经常有这样的需求,我们在Windows下载的软件包,如何上传到远程Linux主机上?还有如何从Linux主机下载软件包到Windows下;之前我的做法现在看来好笨好繁琐,不过也达到了目的,笨人有本方法嘛;
我是怎么操作的:
1、打开一台本地Linux虚拟机,使用mount 挂载Windows的共享文件夹到Linux上,然后拷贝数据到Linux虚拟机里面;(经常第一步都不顺利,无法挂载Windo
- 类的加载ClassLoader
肆无忌惮_
ClassLoader
类加载器ClassLoader是用来将java的类加载到虚拟机中,类加载器负责读取class字节文件到内存中,并将它转为Class的对象(类对象),通过此实例的 newInstance()方法就可以创建出该类的一个对象。
其中重要的方法为findClass(String name)。
如何写一个自己的类加载器呢?
首先写一个便于测试的类Student
- html5写的玫瑰花
知了ing
html5
<html>
<head>
<title>I Love You!</title>
<meta charset="utf-8" />
</head>
<body>
<canvas id="c"></canvas>
- google的ConcurrentLinkedHashmap源代码解析
矮蛋蛋
LRU
原文地址:
http://janeky.iteye.com/blog/1534352
简述
ConcurrentLinkedHashMap 是google团队提供的一个容器。它有什么用呢?其实它本身是对
ConcurrentHashMap的封装,可以用来实现一个基于LRU策略的缓存。详细介绍可以参见
http://code.google.com/p/concurrentlinke
- webservice获取访问服务的ip地址
alleni123
webservice
1. 首先注入javax.xml.ws.WebServiceContext,
@Resource
private WebServiceContext context;
2. 在方法中获取交换请求的对象。
javax.xml.ws.handler.MessageContext mc=context.getMessageContext();
com.sun.net.http
- 菜鸟的java基础提升之道——————>是否值得拥有
百合不是茶
1,c++,java是面向对象编程的语言,将万事万物都看成是对象;java做一件事情关注的是人物,java是c++继承过来的,java没有直接更改地址的权限但是可以通过引用来传值操作地址,java也没有c++中繁琐的操作,java以其优越的可移植型,平台的安全型,高效性赢得了广泛的认同,全世界越来越多的人去学习java,我也是其中的一员
java组成:
- 通过修改Linux服务自动启动指定应用程序
bijian1013
linux
Linux中修改系统服务的命令是chkconfig (check config),命令的详细解释如下: chkconfig
功能说明:检查,设置系统的各种服务。
语 法:chkconfig [ -- add][ -- del][ -- list][系统服务] 或 chkconfig [ -- level <</SPAN>
- spring拦截器的一个简单实例
bijian1013
javaspring拦截器Interceptor
Purview接口
package aop;
public interface Purview {
void checkLogin();
}
Purview接口的实现类PurviesImpl.java
package aop;
public class PurviewImpl implements Purview {
public void check
- [Velocity二]自定义Velocity指令
bit1129
velocity
什么是Velocity指令
在Velocity中,#set,#if, #foreach, #elseif, #parse等,以#开头的称之为指令,Velocity内置的这些指令可以用来做赋值,条件判断,循环控制等脚本语言必备的逻辑控制等语句,Velocity的指令是可扩展的,即用户可以根据实际的需要自定义Velocity指令
自定义指令(Directive)的一般步骤
&nbs
- 【Hive十】Programming Hive学习笔记
bit1129
programming
第二章 Getting Started
1.Hive最大的局限性是什么?一是不支持行级别的增删改(insert, delete, update)二是查询性能非常差(基于Hadoop MapReduce),不适合延迟小的交互式任务三是不支持事务2. Hive MetaStore是干什么的?Hive persists table schemas and other system metadata.
- nginx有选择性进行限制
ronin47
nginx 动静 限制
http {
limit_conn_zone $binary_remote_addr zone=addr:10m;
limit_req_zone $binary_remote_addr zone=one:10m rate=5r/s;...
server {...
location ~.*\.(gif|png|css|js|icon)$ {
- java-4.-在二元树中找出和为某一值的所有路径 .
bylijinnan
java
/*
* 0.use a TwoWayLinkedList to store the path.when the node can't be path,you should/can delete it.
* 1.curSum==exceptedSum:if the lastNode is TreeNode,printPath();delete the node otherwise
- Netty学习笔记
bylijinnan
javanetty
本文是阅读以下两篇文章时:
http://seeallhearall.blogspot.com/2012/05/netty-tutorial-part-1-introduction-to.html
http://seeallhearall.blogspot.com/2012/06/netty-tutorial-part-15-on-channel.html
我的一些笔记
===
- js获取项目路径
cngolon
js
//js获取项目根路径,如: http://localhost:8083/uimcardprj
function getRootPath(){
//获取当前网址,如: http://localhost:8083/uimcardprj/share/meun.jsp
var curWwwPath=window.document.locati
- oracle 的性能优化
cuishikuan
oracleSQL Server
在网上搜索了一些Oracle性能优化的文章,为了更加深层次的巩固[边写边记],也为了可以随时查看,所以发表这篇文章。
1.ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前,那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾。(这点本人曾经做过实例验证过,的确如此哦!
- Shell变量和数组使用详解
daizj
linuxshell变量数组
Shell 变量
定义变量时,变量名不加美元符号($,PHP语言中变量需要),如:
your_name="w3cschool.cc"
注意,变量名和等号之间不能有空格,这可能和你熟悉的所有编程语言都不一样。同时,变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)。
中间不能有空格,可以使用下划线(_)。
不能使用标点符号。
不能使用ba
- 编程中的一些概念,KISS、DRY、MVC、OOP、REST
dcj3sjt126com
REST
KISS、DRY、MVC、OOP、REST (1)KISS是指Keep It Simple,Stupid(摘自wikipedia),指设计时要坚持简约原则,避免不必要的复杂化。 (2)DRY是指Don't Repeat Yourself(摘自wikipedia),特指在程序设计以及计算中避免重复代码,因为这样会降低灵活性、简洁性,并且可能导致代码之间的矛盾。 (3)OOP 即Object-Orie
- [Android]设置Activity为全屏显示的两种方法
dcj3sjt126com
Activity
1. 方法1:AndroidManifest.xml 里,Activity的 android:theme 指定为" @android:style/Theme.NoTitleBar.Fullscreen" 示例: <application
- solrcloud 部署方式比较
eksliang
solrCloud
solrcloud 的部署其实有两种方式可选,那么我们在实践开发中应该怎样选择呢? 第一种:当启动solr服务器时,内嵌的启动一个Zookeeper服务器,然后将这些内嵌的Zookeeper服务器组成一个集群。 第二种:将Zookeeper服务器独立的配置一个集群,然后将solr交给Zookeeper进行管理
谈谈第一种:每启动一个solr服务器就内嵌的启动一个Zoo
- Java synchronized关键字详解
gqdy365
synchronized
转载自:http://www.cnblogs.com/mengdd/archive/2013/02/16/2913806.html
多线程的同步机制对资源进行加锁,使得在同一个时间,只有一个线程可以进行操作,同步用以解决多个线程同时访问时可能出现的问题。
同步机制可以使用synchronized关键字实现。
当synchronized关键字修饰一个方法的时候,该方法叫做同步方法。
当s
- js实现登录时记住用户名
hw1287789687
记住我记住密码cookie记住用户名记住账号
在页面中如何获取cookie值呢?
如果是JSP的话,可以通过servlet的对象request 获取cookie,可以
参考:http://hw1287789687.iteye.com/blog/2050040
如果要求登录页面是html呢?html页面中如何获取cookie呢?
直接上代码了
页面:loginInput.html
代码:
<!DOCTYPE html PUB
- 开发者必备的 Chrome 扩展
justjavac
chrome
Firebug:不用多介绍了吧https://chrome.google.com/webstore/detail/bmagokdooijbeehmkpknfglimnifench
ChromeSnifferPlus:Chrome 探测器,可以探测正在使用的开源软件或者 js 类库https://chrome.google.com/webstore/detail/chrome-sniffer-pl
- 算法机试题
李亚飞
java算法机试题
在面试机试时,遇到一个算法题,当时没能写出来,最后是同学帮忙解决的。
这道题大致意思是:输入一个数,比如4,。这时会输出:
&n
- 正确配置Linux系统ulimit值
字符串
ulimit
在Linux下面部 署应用的时候,有时候会遇上Socket/File: Can’t open so many files的问题;这个值也会影响服务器的最大并发数,其实Linux是有文件句柄限制的,而且Linux默认不是很高,一般都是1024,生产服务器用 其实很容易就达到这个数量。下面说的是,如何通过正解配置来改正这个系统默认值。因为这个问题是我配置Nginx+php5时遇到了,所以我将这篇归纳进
- hibernate调用返回游标的存储过程
Supanccy2013
javaDAOoracleHibernatejdbc
注:原创作品,转载请注明出处。
上篇博文介绍的是hibernate调用返回单值的存储过程,本片博文说的是hibernate调用返回游标的存储过程。
此此扁博文的存储过程的功能相当于是jdbc调用select 的作用。
1,创建oracle中的包,并在该包中创建的游标类型。
---创建oracle的程
- Spring 4.2新特性-更简单的Application Event
wiselyman
application
1.1 Application Event
Spring 4.1的写法请参考10点睛Spring4.1-Application Event
请对比10点睛Spring4.1-Application Event
使用一个@EventListener取代了实现ApplicationListener接口,使耦合度降低;
1.2 示例
包依赖
<p