并发编程模型的2个关键问题
- 线程间如何通信
- 线程间如何同步
happens-before规则
如果一个操作的执行结果需要对另一个操作可见,那么这2个操作必须存在happens-before规则
它避免Java程序员为了理解JMM提供的内存可见性而去学习复杂的重排序规则以及这些规则的具体实现方法
- 如果线程1解锁了monitora,接着线程2锁定了a,那么,线程1解锁a之前的写操作都对线程2可见(线程1和线程2可以是同一个线程)。
- 如果线程1写入了volatile变量v(这里和后续的“变量”都指的是对象的字段、类字段和数组元素),接着线程2读取了v,那么,线程1写入v及之前的写操作都对线程2可见(线程1和线程2可以是同一个线程)。
- 线程t1写入的所有变量(所有action都与那个join有hb关系,当然也包括线程t1终止前的最后一个action了,最后一个action及之前的所有写入操作,所以是所有变量),在任意其它线程t2调用t1.join()成功返回后,都对t2可见。
- 线程中上一个动作及之前的所有写操作在该线程执行下一个动作时对该线程可见(也就是说,同一个线程中前面的所有写操作对后面的操作可见)
volatile的特性
- 可见性:对一个volatile变量的读,总能看到(任意线程)对这个volatile变量最后的写入。
- 原子性:对任意单个volatile变量的读写具有原子性,但类似于volatile++这种复合操作不具有原子性
lock
不要将获取锁的过程写在try块中
lock接口提供的synchronized不具备的特性
特性 | 描述 |
---|---|
尝试非阻断的获取锁 | 当前线程尝试获取锁,如果这一刻锁没有被其他线程获取到,则成功获取到锁 |
能被中断的获取锁 | 与synchronized不同,获取到锁的线程能够响应中断,当获取到锁的线程被中断时,中断异常将会被抛出,同时锁会被释放 |
超时获取锁 | 在制定的截止时间之前获取锁,如果到了截止时间仍旧无法获取锁,则返回 |
AbstractQueuedSynchronizer(同步器)
用来构建锁或者其他同步组件的基础框架,它使用一个int成员变量表示同步状态,通过内置的FIFO队列来完成资源获取线程的排队工作。自定义同步器在实现时只需要实现共享资源state的获取与释放方式即可
同步队列
同步器依赖内部的同步队列来完成同步状态的管理,当前线程获取同步状态失败时,同步器会将当前线程及等待状态等信息构成为一个节点并将其加入同步队列,同时会阻塞当前线程,当同步状态释放时,会把首节点中的线程唤醒,使其再次尝试获取同步状态。
独占式同步状态获取与释放
调用同步器的acquire方法获取同步状态
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
该代码主要逻辑:首先调用自定义同步器实现的tryAcquire(int arg)方法,该方法保证线程安全的获取同步状态,如果同步状态获取失败,则构造同步节点(独占式Node.EXCLUSIVE,同一时刻只能有一个线程成功获取同步状态)并通过addWaiter(Node node)方法将该节点加入到同步队列的尾部,最后调用acquireQueued(Node node,int arg)方法,使得该节点以“死循环”的方式获取同步状态。如果获取不到则阻塞节点中的线程,而被阻塞线程的唤醒主要依靠前驱节点的出队或阻塞线程被中断来实现。
[站外图片上传中...(image-dba881-1517558431518)]
共享式同步状态获取与释放
共享式获取与独占式获取最主要的区别在于同一时刻能否有多个线程获取到同步状态。
public final void acquireShared(int arg) {
if (tryAcquireShared(arg) < 0)
doAcquireShared(arg);
}
private void doAcquireShared(int arg) {
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
if (interrupted)
selfInterrupt();
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
读写锁的设计实现
读写状态的设计
在一个整型变量上维护多种状态,就需要“按位切割使用”,高16位表示读,低16位表示写。
[站外图片上传中...(image-681696-1517558431518)]
写锁的获取和释放
写锁是一个支持重进入的排它锁。如果当前线程已经获取了写锁,则增加写状态。如果当前线程在获取写锁时,读锁已经被获取(读状态不为0)或者当前线程不是已经获取写锁的线程,则当前线程进入等待状态。
protected final boolean tryAcquire(int acquires) {
Thread current = Thread.currentThread();
int c = getState();
int w = exclusiveCount(c);
if (c != 0) {
// 存在读锁或者当前线程不是已经获取写锁的线程
if (w == 0 || current != getExclusiveOwnerThread())
return false;
if (w + exclusiveCount(acquires) > MAX_COUNT)
throw new Error("Maximum lock count exceeded");
// Reentrant acquire
setState(c + acquires);
return true;
}
if (writerShouldBlock() ||
!compareAndSetState(c, c + acquires))
return false;
setExclusiveOwnerThread(current);
return true;
}
读锁的获取与释放
读锁是一个支持重进入的共享锁,它能被多个线程同时获取,在没有其他线程访问时(或者写状态为0)时,读锁总会被成功获取,而所做的也只是(线程安全的)增加读状态。如果当前线程已获取了读锁,则增加读状态。
protected final int tryAcquireShared(int unused) {
/*
* Walkthrough:
* 1. If write lock held by another thread, fail.
* 2. Otherwise, this thread is eligible for
* lock wrt state, so ask if it should block
* because of queue policy. If not, try
* to grant by CASing state and updating count.
* Note that step does not check for reentrant
* acquires, which is postponed to full version
* to avoid having to check hold count in
* the more typical non-reentrant case.
* 3. If step 2 fails either because thread
* apparently not eligible or CAS fails or count
* saturated, chain to version with full retry loop.
*/
Thread current = Thread.currentThread();
int c = getState();
if (exclusiveCount(c) != 0 &&
getExclusiveOwnerThread() != current)
return -1;
int r = sharedCount(c);
if (!readerShouldBlock() &&
r < MAX_COUNT &&
compareAndSetState(c, c + SHARED_UNIT)) {
if (r == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current))
cachedHoldCounter = rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
}
return 1;
}
return fullTryAcquireShared(current);
}