- 概率图模型家族(HMM、MaxEnt、MEMM和CRF)
ErbaoLiu
自然语言处理&大模型机器学习&大模型概率图概率图模型贝叶斯网络隐马尔科夫模型最大熵模型条件随机场
目录概率图(ProbabilisticGraphical)有向概率图无向概率图隐马尔科夫模型(HMM)最大熵模型(MaxEnt)最大熵马尔科夫模型(MEMM)条件随机场(ConditionalRandomField)一般CRF一般CRF参数化线性链CRF线性链CRF参数化总结简单应用——基于CRF地名识别隐马尔科夫模型(HiddenMarkovModel,HMM)、最大熵模型(MaximumEnt
- Laplace(拉普拉斯)平滑
郑万通
机器学习平滑技术拉普拉斯平滑机器学习Laplace
平滑技术平滑技术是为了解决训练集的数据稀松问题。零概率问题,就是在计算实例的概率时,如果某个量x,在观察样本库(训练集)中没有出现过,会导致整个实例的概率结果是0。在文本分类的问题中,当一个词语没有在训练样本中出现,该词语调概率为0,使用连乘计算文本出现概率时也为0。这是不合理的,不能因为一个事件没有观察到就武断的认为该事件的概率是0。一般的m阶马尔科夫链转移概率是这样训练的:P(cm+1|c1c
- 元宵源码大奉送
码递夫
代码推荐java前端javassmspringspringboot小程序管理系统
大家好,我是程序员码递夫。元宵了,蛇年春节就要过完了,好多粉丝问,啥时候上新代码,今天安排给上进的粉丝们送上自己珍藏的代码(第二波)。免费获取源码。以下只是部分代码的列表,更多内容敬请期待。如有需要可以联系作者免费送更多源码定制,项目修改,项目二开可以联系作者。部分SSM系统列表ssm基于SSM的毕业生就业管理系统+vuessm基于ssm框架的校园闲置物品交易平台+jspssm社区医疗保健监控系统
- OpenCV识别电脑摄像头中的圆形物体
欣然~
opencv人工智能计算机视觉
思路步骤初始化摄像头:使用cv2.VideoCapture打开电脑摄像头。处理每一帧图像:对摄像头捕获的每一帧图像进行处理,包括灰度化、高斯模糊、霍夫圆变换等操作。绘制圆形和圆心:如果检测到圆形,使用cv2.circle函数用黄线绘制圆形边缘,用红线绘制圆心。显示结果:使用cv2.imshow显示处理后的图像,并通过cv2.waitKey等待按键事件。代码解释导入必要的库:导入cv2和numpy库
- 【Android—OpenCV实战】实现霍夫圆检测针对沙盘交通灯信号检测
我的青春不太冷
androidopencv人工智能计算机视觉Python
文章目录AndroidOpenCV实战:霍夫圆检测实现沙盘交通灯智能识别引言:当计算机视觉遇见智慧交通霍夫圆检测原理剖析数学之美:参数空间转换关键参数解析Android实现全流程环境准备核心代码解析颜色识别策略性能优化技巧实验结果对比完整实现流程图Python实现霍夫圆检测Android实现霍夫圆检测Android实现霍夫圆检测(精简版本)扩展方向以及建议参考文献AndroidOpenCV实战:霍
- 电影《哪吒之魔童闹海》迅雷BT下载[AVI/1.28GB/2.35GB]高清百度云共享[HD1280p已更新]
视频php
《哪吒之魔童闹海》:一场视觉与心灵的双重盛宴《哪吒之魔童闹海》是由饺子编剧并执导,吕艳婷、囧森瑟夫、瀚墨、陈浩、绿绮担任主要配音的奇幻动画电影。影片于2025年1月29日在中国大陆上映,作为《哪吒》系列电影的第二部,该片延续了前作的经典元素,并在剧情、角色塑造、主题阐释等方面进行了全方位的升级和突破。影片不仅以其震撼的视觉效果和深刻的情感内核赢得了观众的喜爱,更以其独特的文化魅力和哲学深度引发了广
- 电影《哪吒之魔童闹海》迅雷BT下载[AVI/1.28GB/2.35GB]高清百度云共享[HD1280p已更新]
视频php
《哪吒之魔童闹海》:一场视觉与心灵的双重盛宴《哪吒之魔童闹海》是由饺子编剧并执导,吕艳婷、囧森瑟夫、瀚墨、陈浩、绿绮担任主要配音的奇幻动画电影。影片于2025年1月29日在中国大陆上映,作为《哪吒》系列电影的第二部,该片延续了前作的经典元素,并在剧情、角色塑造、主题阐释等方面进行了全方位的升级和突破。影片不仅以其震撼的视觉效果和深刻的情感内核赢得了观众的喜爱,更以其独特的文化魅力和哲学深度引发了广
- 【高中生讲机器学习】30. 理解条件随机场最清晰的思路!(上篇)
Geeker · LStar
机器学习人工智能算法机器学习人工智能条件随机场算法监督学习标注问题
创建时间:2024-12-22首发时间:2025-01-24最后编辑时间:2024-01-24作者:Geeker_LStar你好呀~这里是Geeker_LStar的人工智能学习专栏,很高兴遇见你~我是Geeker_LStar,一名高一学生,热爱计算机和数学,我们一起加油~!⭐(●’◡’●)⭐上一篇我们讲完了马尔可夫随机场MRF,那篇的最后我简单介绍了条件随机场CRF但没有展开讲。这不,这篇就来填坑
- 构建由局部观测、分布式决策与全局奖励协同作用的多智能体强化学习系统
由数入道
分布式强化学习智能体
1.问题背景与建模:从自治调度到POMDP1.1自治调度问题与多智能体环境在实际应用中(例如生产调度、资源分配等),多个自治决策单元(智能体)需要在一个共享的环境中协同工作,每个智能体只能获取局部信息(例如自身状态或部分环境观测),但它们的行为会相互影响。传统的单智能体强化学习(RL)模型难以直接适用于这种场景,因此需要多智能体强化学习(MARL)的方法。1.2将问题转化为部分可观测马尔可夫决策过
- AUTOSAR从入门到精通-【应用实战篇】车载HMI-ADAS
林木秀
物联网单片机嵌入式硬件开发语言matlab
目录前言ADAS提供商有哪些1.大陆2.博世3.奥托立夫4.德尔福5.采埃孚&天合6.电装7.法雷奥ADAS级别ADAS功能是如何设计的?传感器的重要性相机雷达激光雷达记录仪上的adas有什么用途?Adas功能及特点1.导航系统(GuidanceSystem)2.实时交通系统(TrafficMessageChannel)3.电子警察系统ISA(Intelligentspeedadaptation或
- 马尔科夫链(Markov Chain)没有发射概率 B
苏西月
概率论
1.马尔科夫链的定义马尔科夫链是一种序列模型,其中状态是完全可见的,没有“隐藏”部分。它的转移是根据当前状态决定的,只关心当前状态转移到下一个状态的概率。其核心是状态转移概率矩阵AAA。核心特点:只关注状态之间的转移,不涉及观察值(观测值)的生成。数学定义:如果在时间ttt的状态为XtX_tXt,那么XtX_tXt的分布只取决于Xt−1X_{t-1}Xt−1,即满足马尔科夫性:P(Xt∣Xt−1,
- 马尔科夫链与隐马尔可夫模型的区别
苏西月
机器学习人工智能
1.马尔科夫链的状态转移概率计算对于马尔科夫链,状态是完全可见的,所以我们可以直接计算转移概率aija_{ij}aij(从状态iii转移到状态jjj的概率)。公式aij=C(i→j)∑q∈QC(i→q)a_{ij}=\frac{C(i\toj)}{\sum_{q\inQ}C(i\toq)}aij=∑q∈QC(i→q)C(i→j)的含义:C(i→j)C(i\toj)C(i→j):表示从状态iii转移
- 齐普夫定律(Zipf‘s Law)
彬彬侠
自然语言处理齐普夫定律Zipf’sLaw单词频率排名PythonNLP自然语言处理
齐普夫定律(Zipf’sLaw)1.定义齐普夫定律(Zipf’sLaw)是一种经验法则,描述了单词频率分布在自然语言中的规律。它指出,在一篇文本或一个语料库中,单词的出现频率fff与其频率排名rrr之间存在如下关系:f∝1rsf\propto\frac{1}{r^s}f∝rs1其中:fff是单词的出现频率。rrr是单词的排名(按照频率从高到低排序)。sss是一个常数,通常在自然语言中接近1(即s≈
- Python——pyqt5——消息框(QMessageBox)
少年痴北城
python
一、提供的类型QMessageBox.information信息框QMessageBox.question问答框QMessageBox.warning警告QMessageBox.ctitical危险QMessageBox.about关于二、引用fromPyQt5.QtWidgetsimportQMessageBox三、代码示例#消息框#self当前窗口的夫窗口#消息:信息QMessageBox.i
- 隐马尔可夫模型(Hidden Markov Model, HMM) 和 最大熵马尔可夫模型(Maximum Entropy Markov Model, MEMM)
苏西月
人工智能
1.HMM(隐马尔可夫模型)HMM是生成式模型(GenerativeModel)HMM通过建模整个联合概率分布P(X,Y)P(X,Y)P(X,Y)来进行序列标注,其中:X=(x1,x2,...,xn)X=(x_1,x_2,...,x_n)X=(x1,x2,...,xn)是观测序列(例如一个句子中的单词)。Y=(y1,y2,...,yn)Y=(y_1,y_2,...,y_n)Y=(y1,y2,...
- 昆虫机器人:从仿生设计到未来应用
机器小乙
机器人
目录引言:从科幻到现实的启示仿生昆虫机器人:技术突破与功能解析应用场景:农业与灾后救援的革新技术难点:微型机器人研发的挑战未来趋势:智能化与群体协作的潜力总结:昆虫机器人技术的广阔前景1.引言:从科幻到现实的启示还记得阿西莫夫的《奇幻之旅》吗?科学家通过微型潜艇进入人体进行探险,这种场景曾是科幻迷的梦想。如今,随着人工智能和仿生设计的发展,这些奇思妙想正在逐步成为现实。最近,《科学机器人》期刊的一
- 灰色预测模型_预测模型——灰色模型
weixin_39548740
灰色预测模型
网上有许多大佬写的灰色预测模型,写的非常的棒,但是我个人感觉,在公式部分,许多大佬在写最小二乘法得出a,b的值的时候并不是那么细致,所以我写这一篇灰色模型既是详细介绍公式的由来,同时也是为后续我要写的组合模型,如灰色模型与神经网络的结合,灰色模型与马尔可夫链式模型的结合做一个铺垫,希望对大家有帮助。1,灰色系统介绍灰色系统是由华中科技大学的邓聚龙教授于80年代初创立,该系统作为新兴的横断学科,在短
- 【算法】经典博弈论问题——斐波那契博弈 + Zeckendorf 定理 python
查理零世
算法python数据结构
目录斐波那契博弈(FibonacciNim)齐肯多夫(Zeckendorf)定理示例分析实战演练斐波那契博弈(FibonacciNim)先说结论:当初始石子数目n是斐波那契数时,先手必败;否则,先手有策略获胜。证明概要:当n=2时,先手只能取1颗石子,后手直接取剩下的1颗石子获胜,因此先手必败。假设对于所有小于等于某个斐波那契数f[k]的情况,结论都成立。归纳:对于f[k+1]=f[k]+f[k-
- 《零基础学Nginx:轻松搭建高性能Web服务器-kylin系统》
入眼皆含月
nginx服务器运维
一、概述Nginx(发音为“engineX”)是一款高性能的开源HTTP服务器和反向代理服务器,同时也支持IMAP/POP3代理服务器。它由俄罗斯程序员伊戈尔·西索夫(IgorSysoev)开发,并于2004年首次发布。Nginx以其高并发处理能力、低资源消耗和高性能而闻名,广泛应用于互联网行业,是许多大型网站和高性能需求场景的首选解决方案。二、Nginx的特点(1)高性能:Nginx采用事件驱动
- AIGC算法工程师 面试八股文
沉迷单车的追风少年
DiffusionModels与深度学习面试经验记录AIGCstablediffusion面试八股文
目录八股文1、简述DDPM的算法原理2、什么是重参数化技巧?DiffusionModels和VAE中的重参数化技巧是如何使用的?VAE中的重参数化技巧DiffusionModels中的重参数化技巧3、什么是马尔可夫过程?DDPM中的马尔可夫链是如何定义的?马尔可夫过程DDPM马尔可夫链4、为什么DDPM前向过程中前期加噪少,后期加噪多?5、VAE和DiffusionModels中的变分推断是什么?
- 自然语言处理的发展历程
数亦有术
自然语言处理人工智能
1.自然语言处理发展的7个阶段序号阶段时间贡献代表人物1起源期1913-1956思考使用图灵算法计量模型来描述自然语言,描述词语及词语之间的关系。这一阶段停留在理论层面做探索图灵、马尔可夫、香农2基于规则的形式语言理论期1957-1970形式语言理论的提出,开启了学术界对自然语言结构的研究、建模和解析,从而为基于结构与规则的文本识别、生成和翻译开辟了一条康庄大道诺姆·乔姆斯基、冯志伟3基于规则、概
- Multicoin Capital:预测再变,这 7 个趋势不变
web3比特币区块链智能合约
作者:Techub精选编译撰文:MulticoinCapital合伙人团队编译:Yangz,TechubNews亚马逊创始人杰夫·贝索斯关于未来趋势的论述常发人深省。贝索斯认为,「未来10年会发生什么变化」是个有趣,但也十分普通的问题。相反,在他看来,「未来10年什么不会改变」更为重要。本周早些时候,我们发表了一篇「千篇一律」的风险投资文章,介绍了我们的投资团队期待在2025年看到的新兴领域。本着
- 智能体在环境中学习和作出决策
由数入道
人工智能人工智能智能体深度学习
一、概述强化学习是一类通过与环境交互获取反馈并不断优化决策策略的机器学习方法。与监督学习和无监督学习不同,强化学习直接面向序列决策问题,核心目标是找到使智能体(Agent)在环境中获得最大化累积奖励(CumulativeReward)的策略。其理论基础通常以马尔可夫决策过程(MarkovDecisionProcess,MDP)为框架。MDP的五元组通常表示为(S,A,P,R,γ)(S,A,P,R,
- 距离度量方法
进击的学徒
机器学习标准距离矢量算法
目录目录1欧氏距离1原理2例子2曼哈顿距离1原理2例子3切比雪夫距离1原理2例子4闵可夫斯基距离1原理2例子5标准化欧氏距离1原理2例子6马氏距离1原理2例子7巴氏距离1原理8汉明距离9夹角余弦1原理2例子1、欧氏距离1.1原理最常见的两点之间或多点之间的距离表示法,又称之为欧几里德度量,它定义于欧几里得空间中。二维平面上两点a(x1,y1),b(x2,y2)之间的欧式距离公式:dab=(x1−x
- Python基于YOLOv8和OpenCV实现车道线和车辆检测
old_power
计算机视觉YOLOopencv计算机视觉python
使用YOLOv8(YouOnlyLookOnce)和OpenCV实现车道线和车辆检测,目标是创建一个可以检测道路上的车道并识别车辆的系统,并估计它们与摄像头的距离。该项目结合了计算机视觉技术和深度学习物体检测。1、系统主要功能车道检测:使用边缘检测和霍夫线变换检测道路车道。汽车检测:使用YOLOv8模型识别汽车并在汽车周围绘制边界框。距离估计:使用边界框大小计算检测到的汽车与摄像头的距离。2、环境
- 211本硕二战腾讯大模型算法岗,已凉......
AI大模型入门
算法阿里云人工智能云计算目标跟踪
01背景本弱鸡211本硕,nlp,无论文有实习(老板没资源且放养),本科有acm经历(1铜),面试pcg日常实习。02技术一面(时长1h)Q1:了解什么机器学习算法,讲一下原理?当时只记得实体识别用到了隐马尔可夫模型,讲了讲怎么怎么定义观测状态和隐藏状态、前向传播、解码和应用场景。Q2:讲一下Bert的结构和怎么训练的,怎么用bert做下游任务?八股,双向transformerencoder结构,
- 《庄子.达生9》
钱江潮369
【原文】孔子观于吕梁,县水三十仞,流沫四十里,鼋鼍鱼鳖之所不能游也。见一丈夫游之,以为有苦而欲死也,使弟子并流而拯之。数百步而出,被发行歌而游于塘下。孔子从而问焉,曰:“吾以子为鬼,察子则人也。请问,‘蹈水有道乎’”曰:“亡,吾无道。吾始乎故,长乎性,成乎命。与齐俱入,与汩偕出,从水之道而不为私焉。此吾所以蹈之也。”孔子曰:“何谓始乎故,长乎性,成乎命?”曰:“吾生于陵而安于陵,故也;长于水而安于
- 学习“论语”-第59天
春峰轩
12.14子张问政。子曰:“居之无倦,行之以忠。”子张问为政之道。孔子说:“在位尽职不懈怠,执行政令要忠诚。”12.15子曰:“博学于文,约之以礼,亦可以弗畔矣夫!”孔子说:“君子广泛地学习文献,并且用礼节约束自己,也就不会离经叛道了。”12.16子曰:“君子成人之美,不成人之恶。小人反是。”孔子说:“君子成全别人的好事,而不助长别人的坏处。小人则与此相反行事。”知识点:“成人之美,不成人之恶”贯
- 《道德经》第七十二章 民不畏威
AleoR
民不畏威,则大威至。无狭其所居,无厌其所生。夫唯不厌,是以不厌。是以圣人自知不自见,自爱不自责。故去彼取此。
- 《历史》与《战国策》札记(一百四)
刘子曰_b08e
卫鞅亡魏入秦,孝公以为相,封之于商,号曰商君。商君治秦,法令至行,公平无私,罚不讳强大,赏不私亲近,法及太子,黥劓其傅。期年之后,道不拾遗,民不妄取,兵革大强,诸侯畏惧。然刻深寡恩,特以强服之耳。孝公行之八年,疾且不起,欲傅商君,辞不受。孝公已死,惠王代后,莅政有顷,商君告归。人说惠王曰:“大臣太重者国危,左右太亲者身危。今秦妇人婴儿皆言商君之法,莫言大王之法。是商君反为主,大王更为臣也。且夫商君
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号