以生产者/消费者模式实例带你理解线程间通信

本篇文章基于synchronized和ReentrantLock来讲解如何进行线程间通信,关于上述两种锁的内容,可以看这篇文章。本篇文章关于线程间通信的讲解将围绕生产者/消费者模式以实例的形式全方位展示线程间通信的方式。(篇幅较长,主要是代码,逻辑很简单,一看就懂,不要有压力)

一、线程间通信的两种方式

1.wait()/notify()

Object类中相关的方法有notify方法和wait方法。因为wait和notify方法定义在Object类中,因此会被所有的类所继承。这些方法都是final的,即它们都是不能被重写的,不能通过子类覆写去改变它们的行为。

①wait()方法:让当前线程进入等待,并释放锁。

②wait(long)方法:让当前线程进入等待,并释放锁,不过等待时间为long,超过这个时间没有对当前线程进行唤醒,将自动唤醒。

③notify()方法:让当前线程通知那些处于等待状态的线程,当前线程执行完毕后释放锁,并从其他线程中唤醒其中一个继续执行。

④notifyAll()方法:让当前线程通知那些处于等待状态的线程,当前线程执行完毕后释放锁,将唤醒所有等待状态的线程。

wait()方法使用注意事项

①当前的线程必须拥有当前对象的monitor,也即lock,就是锁,才能调用wait()方法,否则将抛出异常java.lang.IllegalMonitorStateException。

②线程调用wait()方法,释放它对锁的拥有权,然后等待另外的线程来通知它(通知的方式是notify()或者notifyAll()方法),这样它才能重新获得锁的拥有权和恢复执行。

③要确保调用wait()方法的时候拥有锁,即,wait()方法的调用必须放在synchronized方法或synchronized块中。
wait()与sleep()比较

当线程调用了wait()方法时,它会释放掉对象的锁。

Thread.sleep(),它会导致线程睡眠指定的毫秒数,但线程在睡眠的过程中是不会释放掉对象的锁的。

notify()方法使用注意事项

①如果多个线程在等待,它们中的一个将会选择被唤醒。这种选择是随意的,和具体实现有关。(线程等待一个对象的锁是由于调用了wait()方法)。

②被唤醒的线程是不能被执行的,需要等到当前线程放弃这个对象的锁,当前线程会在方法执行完毕后释放锁。

wait()/notify()协作的两个注意事项

①通知过早

如果通知过早,则会打乱程序的运行逻辑。

public class MyRun {
    private String lock = new String("");
    public Runnable runnableA = new Runnable() {

        @Override
        public void run() {
            try {
                synchronized (lock) {
                    System.out.println("begin wait");
                    lock.wait();
                    System.out.println("end wait");
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            }

        }
    };
    public Runnable runnableB = new Runnable() {
        @Override
        public void run() {
            synchronized (lock) {
                System.out.println("begin notify");
                lock.notify();
                System.out.println("end notify");
            }
        }
    };
}

两个方法,分别执行wait()/notify()方法。

public static void main(String[] args) throws InterruptedException {
        MyRun run = new MyRun();
        Thread bThread = new Thread(run.runnableB);
        bThread.start();
        Thread.sleep(100);
        Thread aThread = new Thread(run.runnableA);
        aThread.start();
    }

如果notify()方法先执行,将导致wait()方法释放锁进入等待状态后,永远无法被唤醒,影响程序逻辑。应避免这种情况。

②等待wait的条件发生变化

在使用wait/notify模式时,还需要注意另外一种情况,也就是wait等待条件发生了变化,也容易造成程序逻辑的混乱。

Add类,执行加法操作,然后通知Subtract类

public class Add {
    private String lock;

    public Add(String lock) {
        super();
        this.lock = lock;
    }
    public void add(){
        synchronized (lock) {
            ValueObject.list.add("anyThing");
            lock.notifyAll();
        }
    }
}

Subtract类,执行减法操作,执行完后进入等待状态,等待Add类唤醒notify

public class Subtract {
    private String lock;

    public Subtract(String lock) {
        super();
        this.lock = lock;
    }
    public void subtract(){
        try {
            synchronized (lock) {
                if(ValueObject.list.size()==0){
                    System.out.println("wait begin ThreadName="+Thread.currentThread().getName());
                    lock.wait();
                    System.out.println("wait end ThreadName="+Thread.currentThread().getName());
                }
                ValueObject.list.remove(0);
                System.out.println("list size ="+ValueObject.list.size());
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

**线程ThreadAdd **

public class ThreadAdd extends Thread{
    private Add pAdd;

    public ThreadAdd(Add pAdd) {
        super();
        this.pAdd = pAdd;
    }
    @Override
    public void run() {
        pAdd.add();
    }
    
}

**线程ThreadSubtract **

public class ThreadSubtract extends Thread{
    private Subtract rSubtract;

    public ThreadSubtract(Subtract rSubtract) {
        super();
        this.rSubtract = rSubtract;
    }
    @Override
    public void run() {
        rSubtract.subtract();
    }

}

先开启两个ThreadSubtract线程,由于list中没有元素,进入等待状态。再开启一个ThreadAdd线程,向list中增加一个元素,然后唤醒两个ThreadSubtract线程

public static void main(String[] args) throws InterruptedException {
        String lock = new String("");
        Add add = new Add(lock);
        Subtract subtract = new Subtract(lock);
        ThreadSubtract subtractThread1 = new ThreadSubtract(subtract);
        subtractThread1.setName("subtractThread1");
        subtractThread1.start();
        ThreadSubtract subtractThread2 = new ThreadSubtract(subtract);
        subtractThread2.setName("subtractThread2");
        subtractThread2.start();
        Thread.sleep(1000);
        ThreadAdd addThread = new ThreadAdd(add);
        addThread.setName("addThread");
        addThread.start();
    }

输出结果

wait begin ThreadName=subtractThread1
wait begin ThreadName=subtractThread2
wait end ThreadName=subtractThread2
Exception in thread "subtractThread1" list size =0
wait end ThreadName=subtractThread1
java.lang.IndexOutOfBoundsException: Index: 0, Size: 0
at java.util.ArrayList.rangeCheck(Unknown Source)
at java.util.ArrayList.remove(Unknown Source)
at com.lvr.communication.Subtract.subtract(Subtract.java:18)
at com.lvr.communication.ThreadSubtract.run(ThreadSubtract.java:12)

当第二个ThreadSubtract线程执行减法操作时,抛出下标越界异常。

原因分析:一开始两个ThreadSubtract线程等待状态,当ThreadAdd线程添加一个元素并唤醒所有线程后,第一个ThreadSubtract线程接着原来的执行到的地点开始继续执行,删除一个元素并输出集合大小。同样,第二个ThreadSubtract线程也如此,可是此时集合中已经没有元素了,所以抛出异常。

解决办法:从等待状态被唤醒后,重新判断条件,看看是否扔需要进入等待状态,不需要进入再进行下一步操作。即把if()判断,改成while()。

public void subtract(){
        try {
            synchronized (lock) {
                while(ValueObject.list.size()==0){
                    System.out.println("wait begin ThreadName="+Thread.currentThread().getName());
                    lock.wait();
                    System.out.println("wait end ThreadName="+Thread.currentThread().getName());
                }
                ValueObject.list.remove(0);
                System.out.println("list size ="+ValueObject.list.size());
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

这是线程间协作中经常出现的一种情况,需要避免。

2.Condition实现等待/通知

关键字synchronized与wait()和notify()/notifyAll()方法相结合可以实现等待/通知模式,类似ReentrantLock也可以实现同样的功能,但需要借助于Condition对象。

关于Condition实现等待/通知就不详细介绍了,可以完全类比wait()/notify(),基本使用和注意事项完全一致。
就只简单介绍下类比情况:

condition.await()————>lock.wait()

condition.await(long time, TimeUnit unit)————>lock.wait(long timeout)

condition.signal()————>lock.notify()

condition.signaAll()————>lock.notifyAll()

特殊之处:synchronized相当于整个ReentrantLock对象只有一个单一的Condition对象情况。而一个ReentrantLock却可以拥有多个Condition对象,来实现通知部分线程。

具体实现方式:
假设有两个Condition对象:ConditionA和ConditionB。那么由ConditionA.await()方法进入等待状态的线程,由ConditionA.signalAll()通知唤醒;由ConditionB.await()方法进入等待状态的线程,由ConditionB.signalAll()通知唤醒。篇幅有限,代码示例就不写了。

二、生产者/消费者模式实现

1.一生产与一消费

下面情形是一个生产者,一个消费者的模式。假设场景:一个String对象,其中生产者为其设置值,消费者拿走其中的值,不断的循环往复,实现生产者/消费者的情形。

wait()/notify()实现

生产者

public class Product {
    private String lock;

    public Product(String lock) {
        super();
        this.lock = lock;
    }
    public void setValue(){
        try {
            synchronized (lock) {
                if(!StringObject.value.equals("")){
                    //有值,不生产
                    lock.wait();
                }
                String  value = System.currentTimeMillis()+""+System.nanoTime();
                System.out.println("set的值是:"+value);
                StringObject.value = value;
                lock.notify();
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

消费者

public class Consumer {
    private String lock;

    public Consumer(String lock) {
        super();
        this.lock = lock;
    }
    public void getValue(){
        try {
            synchronized (lock) {
                if(StringObject.value.equals("")){
                    //没值,不进行消费
                    lock.wait();
                }
                System.out.println("get的值是:"+StringObject.value);
                StringObject.value = "";
                lock.notify();
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

生产者线程

public class ThreadProduct extends Thread{
    private Product product;

    public ThreadProduct(Product product) {
        super();
        this.product = product;
    }
    @Override
    public void run() {
        //死循环,不断的生产
        while(true){
            product.setValue();
        }
    }

}

消费者线程

public class ThreadConsumer extends Thread{
    private Consumer consumer;

    public ThreadConsumer(Consumer consumer) {
        super();
        this.consumer = consumer;
    }
    @Override
    public void run() {
        //死循环,不断的消费
        while(true){
            consumer.getValue();
        }
    }

}

开启生产者/消费者模式

public class Test {

    public static void main(String[] args) throws InterruptedException {
        String lock = new String("");
        Product product = new Product(lock);
        Consumer consumer = new Consumer(lock);
        ThreadProduct pThread = new ThreadProduct(product);
        ThreadConsumer cThread = new ThreadConsumer(consumer);
        pThread.start();
        cThread.start();
    }

}

输出结果:

set的值是:148827033184127168687409691
get的值是:148827033184127168687409691
set的值是:148827033184127168687449887
get的值是:148827033184127168687449887
set的值是:148827033184127168687475117
get的值是:148827033184127168687475117

Condition方式实现类似,篇幅有限不全部贴出来。

2.多生产与多消费

特殊情况:按照上述一生产与一消费的情况,通过创建多个生产者和消费者线程,实现多生产与多消费的情况,将会出现“假死”。

具体原因:多个生产者和消费者线程。当全部运行后,生产者线程生产数据后,可能唤醒的同类即生产者线程。此时可能会出现如下情况:所有生产者线程进入等待状态,然后消费者线程消费完数据后,再次唤醒的还是消费者线程,直至所有消费者线程都进入等待状态,此时将进入“假死”。

解决方法:将notify()或signal()方法改为notifyAll()或signalAll()方法,这样就不怕因为唤醒同类而进入“假死”状态了。

Condition方式实现
生产者

public class Product {
    private ReentrantLock lock;
    private Condition condition;

    public Product(ReentrantLock lock, Condition condition) {
        super();
        this.lock = lock;
        this.condition = condition;
    }

    public void setValue() {
        try {
            lock.lock();
            while (!StringObject.value.equals("")) {
                // 有值,不生产
                condition.await();
            }
            String value = System.currentTimeMillis() + "" + System.nanoTime();
            System.out.println("set的值是:" + value);
            StringObject.value = value;
            condition.signalAll();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }finally {
            lock.unlock();
        }
        

    }
}

消费者

public class Consumer {
    private ReentrantLock lock;
    private Condition condition;

    public Consumer(ReentrantLock lock,Condition condition) {
        super();
        this.lock = lock;
        this.condition = condition;
    }
    public void getValue(){
        try {
                lock.lock();
                while(StringObject.value.equals("")){
                    //没值,不进行消费
                    condition.await();
                }
                System.out.println("get的值是:"+StringObject.value);
                StringObject.value = "";
                condition.signalAll();
        
        } catch (InterruptedException e) {
            e.printStackTrace();
        }finally {
            lock.unlock();
        }
    }
}

生产者线程和消费者线程与一生产一消费的模式相同。

开启多生产/多消费模式

public static void main(String[] args) throws InterruptedException {
        ReentrantLock lock = new ReentrantLock();
        Condition newCondition = lock.newCondition();
        Product product = new Product(lock,newCondition);
        Consumer consumer = new Consumer(lock,newCondition);
        for(int i=0;i<3;i++){
            ThreadProduct pThread = new ThreadProduct(product);
            ThreadConsumer cThread = new ThreadConsumer(consumer);
            pThread.start();
            cThread.start();
        }
        
    }

输出结果:

set的值是:148827212374628960540784817
get的值是:148827212374628960540784817
set的值是:148827212374628960540810047
get的值是:148827212374628960540810047

可见交替地进行get/set实现多生产/多消费模式。
注意:相比一生产一消费的模式,改动了两处。①signal()-->signalAll()避免进入“假死”状态。②if()判断-->while()循环,重新判断条件,避免逻辑混乱。

以上就是Java线程间通信的相关知识,以生产者/消费者模式为例,讲解线程间通信的使用以及注意事项。

你可能感兴趣的:(以生产者/消费者模式实例带你理解线程间通信)