高精地图是无人驾驶核心技术之一,精准的地图对无人车定位、导航与控制,以及安全至关重要。本文是“无人驾驶技术系列”第七篇,首先介绍高精地图与传统地图的区别,然后介绍其特点及制作过程。在了解高精地图基础知识后,探索其在无人驾驶场景中的应用。
我们日常使用的用于导航、查询地理信息的地图都属于传统电子地图,其主要服务对象是人类驾驶员。而与传统电子地图不同,高精度电子地图的主要服务对象是无人驾驶系统。本节讨论两者的不同。
如图1所示,我们日常使用的用于导航、查询地理信息的地图,如Google、百度、苹果地图等,都可以并入传统电子地图。尽管电子地图出现还不到一百年,对传统地图的研究和开发已有几千年历史,并发展出“制图学”这一门学科。在制图学的基础上,电子地图的出现极大提高了检索效率,并且能快速查找最优路径,极大方便了人们出行。
传统电子地图是对路网的一种抽象:都将路网抽象成有向图的形式——图的顶点代表路口,边代表路口与路口的连接。路名、地标以及道路骨架信息都可以被抽象成存储于这些有向图顶点或边中的属性。这种抽象的地图表征形式能很好地适应人类驾驶员需求,其原因在于人类生来就有很强的视觉识别及逻辑分析能力。在驾驶过程中,人类驾驶员一般都能有效判别如下信息:识别路面及路面标示线,确定自己在路面的大致位置,寻找并辨认路标等。参照辨识出的信息,结合当前GPS(一般精度在5-10米)在当前电子地图中的位置,人类驾驶员便大致知道自己在实际路网中的位置,并计划下一步如何驾驶。
正是基于人类驾驶员的这些能力,传统电子地图可被极大精简,比如一条弯曲的道路可以被精简到用只有几个点的线段来表示,只要大致轮廓符合现实路网结构,人类驾驶员即可结合驾驶信息定位自己的当前位置。
与传统电子地图不同,高精度电子地图的主要服务对象是无人驾驶车,或者说是机器驾驶员。和人类驾驶员不同,机器驾驶员缺乏与生俱来的视觉识别、逻辑分析能力。比如,人可以很轻松、准确地利用图像、GPS定位自己,鉴别障碍物、人、交通信号灯等,但这对当前的机器人来说都是非常困难的任务。因此,高精度电子地图是当前无人驾驶车技术中必不可少的一个组成部分。高精度电子地图包含大量行车辅助信息,其中,最重要的是对路网精确的三维表征(厘米级精度)。比如,路面的几何结构,道路标示线的位置,周边道路环境的点云模型等。有了这些高精度的三维表征,车载机器人就可以通过比对车载GPS、IMU、LiDAR或摄像头数据来精确确认自己的当前位置。此外,高精地图还包含丰富的语义信息,比如交通信号灯的位置及类型,道路标示线的类型,识别哪些路面可以行驶等。这些能极大提高车载机器人鉴别周围环境的能力。此外,高精度地图还能帮助无人车识别车辆、行人及未知障碍物。这是因为高精地图一般会过滤掉车辆、行人等活动障碍物。如果无人车在行驶过程中发现当前高精地图中没有的物体,便有很大几率是车辆、行人或障碍物。因此,高精地图可以提高无人车发现并鉴别障碍物的速度和精度。
相比服务于GPS导航系统的传统地图而言,高精地图最显著的特点是其表征路面特征的精准性。传统地图只需要做到米级精度即可实现GPS导航,但高精地图需要达到厘米级精度才能保证无人车行驶安全。
此外,高精地图还需要比传统地图有更高的实时性。由于路网每天都有变化,如整修、道路标识线磨损及重漆、交通标示改变等。这些变化需要及时反映在高精地图上以确保无人车行驶安全。实时高精地图有很高的难度,但随着越来越多载有多种传感器的无人车行驶在路网中,一旦有一辆或几辆无人车发现了路网的变化,通过与云端通信,就可以把路网更新信息告诉其他无人车,使其他无人车更加聪明和安全。
和传统地图相似,高精地图也具有分层的数据结构。如图3所示,最底层是基于红外线雷达传感器所建立的精密二维网格。一般这个二维网格的精度保证在5×5厘米左右。可以行驶的路面、路面障碍物,以及路面在激光雷达下的反光强度都被存储于相应的网格当中。无人车在行驶的过程中,通过比对其红外线雷达搜集到的数据及其内存中的高精二维网格,就能确定车辆在路面的具体位置。
高精地图二维网格表征。由于网格很细,我们可以从相应的雷达反射上清楚识别出路面及路面标识线的位置。绿色区域表示不可行驶的路面
除了底层的二维网格表征外,高精地图还包含很多有关路面的语义信息。如图4所示,在二维网格参照系的基础上,高精地图一般还包含道路标识线的位置及特征信息,以及相应的车道特征。由于车载传感器可能会因为恶劣天气、障碍物,以及其他车辆的遮挡不能可靠分析车道信息,高精地图中的车道信息特征能帮助无人车更准确可靠地识别道路标识线,并理解相邻车道之间是否可以安全并道。
高精地图中的车道信息
图5 高精地图中的道路标识线及路牌信息
此外,如图5所示,高精地图还会标明道路标示牌、交通信号等相对于二维网格的位置,这些信息起两方面作用:
提前预备无人车,告知其在某些特定的位置检测相应的交通标示牌或交通信号灯,提高无人车的检测速度。
在无人车没有成功检测出交通标示牌或信号灯的情况下,确保行车安全。
无人车使用的高精地图是个2D网格,数据主要由激光雷达产生,由于激光雷达的精度大约是5厘米,所以地图的最高精度可以达到每个网格5×5厘米。在如此高的精度下,如何有效管理数据是一大挑战。首先,为了尽量让地图在内存里中,我们要尽量去掉不需要的数据。一般激光雷达可覆盖方圆100米范围,假设每个反光强度可以用一个字节记录,那么每次激光雷达扫描可产生4MB数据。扫描会包括公路旁边的树木及房屋,但无人车行驶并不需要这些数据,只需记录公路表面的数据即可。假设路面的宽度为20米,就可以通过数据处理把非公路表面的数据过滤掉,这样每次扫描的数据量会下降到0.8MB。在过滤数据的基础上,还可以使用无损压缩算法,如LASzip压缩地图数据,可以达到超过10倍的压缩率。经过这些处理后,1TB硬盘就可以存下全中国超过10万公里的高精地图数据。
传统电子地图主要依靠卫星图片产生,然后由GPS定位,这种方法可以达到米级精度。而高精地图需要达到厘米级精度,仅靠卫星与GPS是不够的。因此,其生产涉及多种传感器, 由于产生的数据量庞大,通常会使用数据采集车(如图6所示)收集,然后通过线下处理把各种数据融合产生高精地图。
图6 高精地图数据采集车
高精地图的制作是个多传感器融合的过程, 包括了以下几种:
陀螺仪(IMU): 一般使用6轴运动处理组件,包含了3轴加速度和3轴陀螺仪。加速度传感器是力传感器,用来检查上下左右前后哪几个面都受了多少力(包括重力),然后计算每个上的加速度。陀螺仪就是角速度检测仪,检测每个上的加速度。假设无人车以Z轴为轴心,在一秒钟转到了90度,那么它在Z轴上的角速度就是90度/秒。从加速度推算出运动距离需要经过两次积分,所以,但凡加速度测量上有任何不正确,在两次积分后,位置错误会积累然后导致位置预测错误。所以单靠陀螺仪并不能精准地预测无人车位置。
轮测距器(Wheel Odometer): 我们可以通过轮测距器推算出无人车的位置。汽车的前轮通常安装了轮测距器,分别会记录左轮与右轮的总转数。通过分析每个时间段里左右轮的转数,我们可以推算出车辆向前走了多远,向左右转了多少度等。可是由于在不同地面材质(比如冰面与水泥地)上转数对距离转换的偏差,随着时间推进,测量偏差会越来越大。所以单靠轮测距器并不能精准预测无人车位置。
GPS:任务是确定四颗或更多卫星的位置,并计算出它与每颗卫星之间的距离,然后用这些信息使用三维空间的三边测量法推算出自己的位置。要使用距离信息进行定位,接收机还必须知道卫星的确切位置。GPS接收机储存有星历,其作用是告诉接收机每颗卫星在各个时刻的位置。在无人车复杂的动态环境,尤其在大城市中,由于各种高大建筑物的阻拦。GPS多路径反射(Multi-Path)的问题会更加明显。这样得到的GPS定位信息很容易就有几十厘米甚至几米的误差,所以单靠GPS不可以制作高精地图。
激光雷达(LiDAR): 光学雷达通过首先向目标物体发射一束激光,然后根据接收-反射的时间间隔来确定目标物体的实际距离。然后根据距离及激光发射的角度,通过简单的几何变化可以推导出物体的位置信息。LiDAR系统一般分为三个部分:一是激光发射器,发出波长为600nm到1000nm的激光射线;二是扫描与光学部件,主要用于收集反射点距离与该点发生的时间和水平角度(Azimuth);三是感光部件,主要检测返回光的强度。因此我们检测到的每一个点都包括了空间坐标信息以及光强度信息<i>。光强度与物体的光反射度(reflectivity) 直接相关,所以从检测到的光强度也可以对检测到的物体有初步判断。
图7展示了通用的高精地图制作流程。首先陀螺仪(IMU)及轮测距器 (Wheel Odometer)可以高频率地给出当前无人车的位置预测,但由于其精确度原因,位置可能会有一定程度偏差。为了纠正这些偏差,可以使用传感器融合计技术(比如使用Kalman Filter) 结合GPS与激光雷达(LiDAR)的数据算出当前无人车的准确位置。然后根据当前的准确位置与激光雷达的扫描数据,把新数据加入地图中。
图7 高精地图计算架构
公式1是个高度简化的高精地图计算模型, Q代表优化方程,z代表激光雷达扫描出的点,h为方程预测最新扫描点的位置与反光度,m为扫描到的点在地图中的位置,x代表无人车当前位置。这个方程的目的是通过最小化J求出测量点在地图中的准确位置。在计算模型中,m与x开始都是未知的,可以先通过多传感器融合求x,再求出测量点在地图中的准确位置m。
如上文所述,高精度电子地图包含大量的行车辅助信息,包括路面的几何结构、标示线位置、周边道路环境的点云模型等。有了这些高精度的三维表征,无人驾驶系统就可以通过比对车载GPS、IMU、LiDAR或摄像头的数据来精确确认自己当前的位置,并进行实时导航。
无人车对可靠性和安全性要求非常高,所以我们默认已由高精度LiDAR和多种传感器融合建好了地图,在这个前提下,再谈一谈无人车的跟踪和定位技术。
无人车定位主要通过粒子滤波进行。所谓粒子滤波就是指:通过寻找一组在状态空间中传播的随机样本来近似表示概率密度函数,用样本均值代替积分运算,进而获得系统状态的最小方差估计的过程,这些样本被形象地称为“粒子”,故而叫粒子滤波。比较常见的(如在Sebastian Thrun的经典无人车论文中)是粒子滤波维护一个姿态向量(x, y, yaw),默认roll/pitch相对足够准,运动预测可以从IMU中取得加速度和角速度。粒子滤波需要注意样本贫化和其他可能的灾难定位错误(catastrophic error),一小部分粒子可以持续从现在GPS的位置估计中获得。正如前文所说,对样本数量的自适应控制也需要根据实际情况有效调整。
因为已经有了高精度LiDAR点云地图,所以很自然地就可以用实时点云数据和已经建好的地图进行匹配。而3D点云匹配必然要说到Iterative Closest Point (ICP),ICP的目标是在给出两组点云的情况下,假设场景不变,算出这两组点云之间的pose。最早的ICP原理,就是第一组点云的每个点在第二组点云里找到一个最近的匹配,之后通过所有的匹配来计算均方误差(MSE),进而调整估计的pose,这样进行多次迭代,最终算出两组点云的相对pose。因此,预先有地图的情况下,用实时的点云加上一个大概pose猜测就可以精准算出无人车的当前pose,且时间相邻的两帧点云也可以算出一个相对pose。
另一方面,因为无人车是个复杂的多系统融合,所以当前标配是LiDAR,Camera、IMU(六轴陀螺仪)都必须拥有。拥有了Camera和IMU,做各种VO (Visual Odometry)和最近的VIO (Visual Inertial Odometry)SLAM就是自然选择。前面提到的粒子滤波,还有各种版本的卡尔曼滤波,加上Graph和关键帧概念,都属于SLAM范畴。笔者之前曾详细介绍了SLAM的各种应用探讨和相对应的工程细节 (参见《SLAM刚刚开始的未来》),在此不再一一讨论,但值得注意的是,多传感器多信息源融合只要算法正确并工程实现扎实,效果一定会比单一传感器要好。举两个具体的例子:ICP虽然后来有了很多改进(比如point-to-distance的测量改进,又比如用kd-tree加速查找改进),但需要很好的初始化pose,否则ICP很容易掉入局部最优而搞不定全局最优,这时非常需要图像视觉补充。图像的特征点提取描述计算可以让匹配更精准,速度也不慢,但距离太远精准度会下降,而且有很多图像视觉无法搞定的情况(比如无人车或者别的物体阴影,又比如光照变化,获取illumination-invariant特征非常困难),所以笔者认为,多传感器多信息源融合不是“让它变好”,而是“没你不行”。更明显的是,GPS在户外已经很可靠,没有理由不用它先告诉无人车的大概位置。
跟踪和定位技术还是被动的感知方案,而真正意义的无人车也就是全自主驾驶而不是辅助驾驶需要无人车自己智能地来做路径规划,这里从技术层面略作探讨。
路径规划是个范畴很大的话题,需要先做几个限定:一是地图已知,如果未知,就无“规划”可言,机器人或无人车如果完全对世界未知,那么问题实际是“SLAM+探索”;二是对无人车领域来说,一般还是2D或2.5D地图,而不是在3D地图上六个自由度运动规划(那是室内全自主无人机飞行);三是路径规划默认无人车按照规划的路径每一步执行后的pose准确,也就是说,这里刻意把定位和路径规划分开,但实际工程中这两者紧密联系,因为如果定位不准,路径规划一定会受影响。
即使有了这几个设定,路径规划本身有多个教科书版本。这里简单谈有代表性又被广泛应用的两种。一是明确寻找最佳路径的搜索A*算法,核心理念是:如果有最好的路径便一定将其找到。如果单位路径成本(cost)不一样,最好的路径不一定是最短的。A*是搜索了所有可能后,选择了最好的,而且运用了启发式算法来决定。其数据结构实现是priority queue,不停选取“最小成本”节点来扩建路径。
另一类是基于抽样(sampling based)的路径规划——并不知道最优路径是什么,所以从起点开始随机抽样(怎么随机很有讲究)来扩建可能的路径集。有一个很重要的因素可以加速抽样——障碍物的检测。若遇到障碍物,在其方向再扩建路径便没有意义。典型的算法是RRT (Rapidly-exploring Random Tree)。但需要注意,这种算法侧重有效率地让树往大面积没有搜索过的区域增长,实际运用中(特别是在无人车应用中),如果有了启发式算法,实时的路径规划很注重效率,需根据实际情况优化。这方面的研究包括RRT变种或两类算法的结合(如A*-RRT)。
笔者想强调:在无人车工程实现中,路径规划一定要根据传感器情况和地图质量来做实际算法选择和调整。无论地图有多准,传感器的数据质量如何,优化永远需要在安全的前提下进行。
高精度电子地图的信息量与质量直接决定了无人驾驶系统的安全性、可靠性,以及效率。与传统电子地图不同,高精地图更精准(厘米级),更新更快,并且包含了更多信息(语义信息)。由于这些特性,制作高精地图并不容易,需要使用多种传感器互相纠正。在初始图制作完成后,还需要进行过滤以降低数据量达到更好的实时性。在拥有了这些高精度地图信息后,无人驾驶系统就可以通过比对车载GPS、IMU、LiDAR或摄像头数据来确认当前的精确位置,并进行实时导航。
作者简介:
陈辰,斯坦福大学电子工程博士,研究方向大数据挖掘、计算几何,以及机 器学习。期间主要侧重的应用方向包括基于分布式传感器数据的地图 更新与重建。目前就职于DeepMap并从事面向无人车的高清地图开发。
刘少山,PerceptIn联合创始人。加州大学欧文分校计算机博士,研究方向智能 感知计算、系统软件、体系结构与异构计算。现在PerceptIn主要专注 于SLAM技术及其在智能硬件上的实现与优化。
注释 :LiDAR--Light Detection And Ranging,即激光探测与测量。是利用GPS(Global Position System)和IMU(Inertial Measurement Unit,惯性测量装置)机载激光扫描。其所测得的数据为数字表面模型(Digital Surface Model, DSM)的离散点表示,数据中含有空间三维信息和激光强度信息。应用分类(Classification)技术在这些原始数字表面模型中移除建筑物、人造物、覆盖植物等测点,即可获得数字高程模型(Digital Elevation Model, DEM),并同时得到地面覆盖物的高度。
百度把高精度地图制作分为「外业」和「内业」两部分,共三个步骤,分别是外采、后台数据化处理、人工验证以及发布。
简单地说,就是外出采集+后期处理,这和拍电影有点儿类似,前期的拍摄和后期的剪辑配合起来,才能最终生成一部能看的电影。
百度目前的高精度地图以满足 L3 级别自动驾驶的要求为标准,所以采集的道路场景以高速公路为主。算上这次交付的 32 台采集车,百度地图的采集车队总量为 288 台,其中具备高精度地图采集能力的车辆约 40 多台。
百度高精度地图负责人马常杰告诉 GeekCar,百度的高精度地图采集车,单车设备成本在 100 万人民币左右,硬件选型和采集系统都是由百度自行设计开发。
根据我们的观察,整套采集车在采集设备上包括以下几部分:
1. 由 Velodyne 提供的 32 线激光雷达,负责采集点云数据。激光雷达在车顶呈一定角度放置,为的是尽可能多的采集道路信息而非天空信息
2. 摄像头:负责采集前方道路影像,每秒拍摄 7-10 张照片
3.GPS:负责记录车辆 GPS 轨迹
4.IMU
5. 由三台单反相机+120 度鱼眼镜头组成的 360 度环视影像采集系统
1. 采集
而在车内的副驾驶位置,是一台负责控制采集设备的电脑系统,用来让采集员实时监控采集情况。
对于采集员来说,他们的日常工作就是开着采集车以 60-80km/h 的速度在高速公路上平稳的行驶,每天至少需要采集 150 公里的高精度地图数据。
在驾驶采集车的过程中,他们需要不断的确认采集设备是否处于正常工作状态,同时还得根据天气和环境情况选择不同的摄像头参数预设,但是总体来说,外采工作对于采集员的技术要求并不算非常高。当然,因为设备昂贵,所以他们会比较担心采集车在夜晚的安全问题。
对于这些采集设备来说,让他们处于同一个「坐标系」下工作,是非常重要的,也就是所谓的「多传感器标定」。而这些设备综合起来的数据量,一般在一公里 1GB 左右。
马常杰说,这些采集来的数据除了可以用来生产高精度地图,还可以为百度的识别算法提供训练和测试样本。这有助于高精度地图自动化生产能力的提升。
2. 自动融合、识别
采集到的这些每秒 10 帧左右的图像,会由电脑进行自动的识别和融合。简单的说,就是把 GPS、点云、图像等数据叠加到一起,然后进行道路标线、路沿、路牌、交通标志等等道路元素的识别。
另外,诸如同一条道路上下行双向采集之后造成的数据重复问题,也会在这一步里被自动整合,剔除重复内容。
这一步,相当于视频制作里的「粗剪」,只不过,这不是由人工完成的,而是一个自动化步骤。
3. 人工验证、发布
这一步是需要人工完成的,属于内业操作。因为自动化处理不可能做到百分之百的准确,所以得再进行一轮人工验证,相当于视频制作的精剪、输出成片阶段。
在百度上海研发中心,有一些员工就在做高精度地图人工验证的工作。他们需要从云端下载需要验证的路段数据,然后把自动处理之后的高精度地图数据和对应位置的图像信息作比对,找出错误的地方并进行更正。比如,如果系统把一个限速牌错误识别成了 60km/h,而实际是 80km/h,这时就需要进行人工修正。
马常杰说,每个员工每天能修正的数据量在 30-50 公里左右。
这些修正后的数据不会保存在本地,而是需要上传到云端。最终的高精度地图成品,也会通过云平台进行下发。
总体来说,百度认为自己在高精度地图领域具备三个优势:
车队规模大& 覆盖广:拥有全国最大的高精度地图采集车队,覆盖 30 万公里的全国高速及城市道路
精细化程度高:可以精细刻画上百种道路要素和属性
生产效率高:自动化处理程度达到 90%+
自从 Apollo 计划发布以来,围绕它的技术路线、商业模式等问题,就有不少的讨论。不少人的疑问都是:百度说了那么多,但是 Apollo 计划实际执行起来到底怎么玩?
通过和江淮合作,我们能得出一个信息:在 Apollo 计划实际落地的过程中,高精度地图会扮演重要的角色。通用的 Super Cruise 就是利用高精度地图实现高速公路自动驾驶的一个典型案例,类似的方案,相信也会被其他的整车厂所效仿,如果国内的自主品牌们都选择这条路径去走,那么对于百度、高德、四维图新这些图商们来说,就是一个相当大的利好了。
另一个层面上,百度把高精度地图看做是是 Apollo 云端服务的核心数据,这个重要性也可见一斑。
总之,国内图商对于高精度地图的大力推广,也在一定程度上意味着,国内自动驾驶落地的进度正在加快。
原创声明: 本文为 GeekCar 原创作品,欢迎转载。转载时请在文章开头注明作者和「来源自 GeekCar」,并附上原文链接,不得修改原文内容,谢谢合作!
在社交媒体上红极一时的TeslaAutoPilot功能,并还没有达到自动驾驶的L3的级别。其在高速公路上的自动驾驶技术可以理解为:ACC自适应巡航 + LKA车道保持辅助。
那为什么达不到L3甚至以上的级别呢?答案是:没有高精度地图。
Q:为什么没有了高精度地图,自动驾驶寸步难行?
A:因为高精度地图不仅仅是地图,更给了无人车上帝视角。
1.传感器的性能边界
车载传感器的性能边界指的不仅是测量范围,还有面对不同环境时表现出来的感知缺陷。
比如激光传感器检测效果稳定,但在面对大范围的尘土时,也无能为力。我司在测试时就发现,如果前面一辆渣土车飞驰而去,引得尘土满天飞时,无人车发现“面前”全是障碍物。
再比如高分辨率摄像机能检测图像中的物体,而且窄视场的摄像机,可以检测很远的距离。但是面对暴雨/大雪等恶劣天气,很难检测到正确的车道线/障碍物/马路牙子等信息。
下图为tesla的传感器配置及传感器感知范围,扇形角度表示传感器的视场角,扇形半径表示传感器的最大检测距离。可见,最远距离的检测传感器是窄视角的前向视觉传感器。
2.先验信息缺失
先验信息是指某些可以提前采集且短时间内不会改变的信息。
仅依靠传感器的信息是很难感知车辆现在是处在高速公路上,还是处在普通城市道路上的;无限速牌的路段,车速最高可以开多快;前方道路的曲率;所处路段的GPS信号强弱,这些都是传感器遇到检测盲区时,无法实时捕获的信息。
而这些信息是客观存在,不会随外部事物的变化而变化,因此可以提前采集,并作为先验信息传给无人车做决策。
图为高精度地图可以为无人车提供的某些先验信息。包括道路曲率、航向、坡度和横坡角。
3.路口处的路径规划
路口处的路径规划一直是自动驾驶领域较为头疼的问题。
很多大牛为了让汽车能正常地开过路口用尽浑身解数。当然也有简单粗暴的方法,比如Waymo(前Google无人车团队),从他们的宣传视频,大致可以推断他们使用的方法是“高精度地图+高精度定位+管道内行驶”的方式过路口的(纯属猜测)。
Q:高精度地图的加入可以给无人驾驶带来哪些帮助?
A:高精度地图是无人驾驶技术的催化剂,这么说一点都不过分。
1.能极快地实现L3级别的自动驾驶
简单粗暴地使用高精度地图+高精度定位,可快速地实现某些特定场景下的自动驾驶。这里的高精度地图可以理解为一个“管道”,无人车只要保证自己在“管道”内行驶即可(参考waymo的绿色“管道”)。使用高精度定位,告诉车在管道的哪个地方,就可以自动驾驶啦。
驭势科技和白云机场合作开发的无人驾驶车在机场这种特定场景完全就可以使用这种方法。而且通过图片可以看出这车装了差分GPS,如果再加上RTK设备,就是可以达到户外厘米级的定位了。
2.提高无人车舒适性
舒适性是评判自动驾驶好与坏,最重要的元素之一。
前面提到过,由于传感器的性能边界,导致场景中的部分信息是无法感知到的。而这些信息(如道路曲率、坡度角)的缺失又会对无人车的纵向、横向规划控制产生较大影响,乘客会感觉车辆的控制不如“老司机”开得平稳,而一旦舒适性缺失,有再多牛X功能也是徒劳。
3.提高系统性能
传感器对感知到的信息做处理时,一般会选定一个感兴趣区域(ROI,Region of Interest)再在此区域内进行数据处理。比如相机检测行人时,大部分处于天空的图像是可以不用考虑的,所以着重处理图像的下半部分即可。
对于检测红绿灯状态,必须在整幅图像中搜索,因为摄像机不可能知道图像的哪个地方会出现红绿灯。但是如果有了高精度地图信息,我就可以通过高精度定位和高精度地图得到ROI。
根据定位和地图的数据,无人车可以知道前方、两侧是否有交通标志牌,及红绿灯的位置,就可以降低算法的复杂度,减少系统的计算负荷,进而提升系统性能。
下图是通过定位和高精度地图,标记出的ROI,ROI区域包括车道线位置、交通标志牌位置、红绿灯位置等。
Q:高精度地图和一般的导航地图有什么区别?
A:导航地图是给人看的地图,高精度地图是给机器看的地图。
人类开车,只需要知道前方路口有没有红绿灯,路口有几车道,该左转还是右转,即可稳定控制汽车。而无人车不仅要知道有没有红绿灯,还要知道在自车坐标系下的(X, Y, Z);不仅要知道是左转还是右转,还得知道左转和右转的路径线。
目前的控制系统还不具备人类这么高的智能度,所以只有给予控制系统更多的输入信息,才能让无人车控制汽车更接近人类。
简单从道路和POI这个两点来比较一下导航地图和高精度地图的区别。
对于道路属性,导航地图只需要给出道路路网这个级别的数据即可,而高精度地图会给出这个道路中有几条车道,这些车道的线是虚线还是实线,车道是普通道路还是匝道等更多维度的信息。如下图。
肯定有人疑问,既然高精度地图拥有这么多信息,那容量肯定比导航地图大很多吧。
答案是:No
导航地图是给人使用的,它对信息的精度没那么高,但是在信息的丰富程度上比高精度地图大得多。
导航地图不仅要有基本的道路信息,还要具备地图中的各种信息点(POI,Point of Interest)的信息,比如建筑物尺寸、数量、建筑物的用途(医院or商场)等。单纯这些POI信息就比高精度地图车道及常用特征的数据复杂太多,而且数据量也不小。
因此,目前来说,高精度地图和导航地图的容量大小是不分伯仲。
POI是“Point of Interest”的缩写,中文可以翻译为“兴趣点”。在地理信息系统中,一个POI可以是一栋房子、一个商铺、一个邮筒、一个公交站等。
大白 · May 26, 2016
自动驾驶的概念很火。从自动驾驶衍生出的业务和供应商也跟着火了起来。
我们都知道,传感器和高精度地图是其中两个不可缺少的基础要素。随着自动驾驶等级增加,对高精度地图的数据供应商们有了更多要求。那么高精度地图又是通过什么方式采集的呢?
在高德位于昌平的数据中心,这些问题得到了解答。
高德汽车大客户业务总经理、自动驾驶技术专家阿荣告诉我,高德计划在今年底完成超过 28 万公里的全国高速自动驾驶级别(HAD)高精度地图的制作,以及全国国道/省道的 ADAS 级别高精度地图数据采集;2017 年底, ADAS 级别数据扩展到超过 30 个城市主干路,HAD 级别向国省道和主要城市内部扩展。
PS:ADAS 级别高精度地图精度大约在 50cm 级别;HAD 及以上高精度地图精度大约在 10cm 级别。
为了获取这些数据,高德目前有两种采集车,分别用于采集 ADAS 及 HAD 精度要求的高精度地图数据。
(图片来源于网络,左侧日产车型为 HAD 级别采集车,右侧铃木车为 ADAS 级别采集车)
用于采集 ADAS 级别高精度地图数据的采集车,车顶安装有 6 个 CCD 摄像头。其中 5 个摄像头以圆形环绕,顶部一个单独的摄像头,每个像素都是 500 万,总计 3000 万像素。车内副驾驶的位置有用于采集数据的显示屏,机箱在后备箱位置,用于储存和处理数据。
而用于采集 HAD 级别高精度地图数据的采集车,顶部则是通过装配 2 个激光雷达(位于后方)和 4 个摄像头(两前两后)的方式来满足所需要的 10cm 级别精度。两种方案搭配,能够完成标牌、障碍物、车道线等道路信息的三维模型搭建。高德的工作人员告诉我,这辆车的造价超过了 800 万人民币,上面搭载的 RIEGL 三维激光扫描系统也是目前级别最高的产品。
当然,这两种车采集到的数据只是作为基础。道路信息是不断更新的,并且,随着自动驾驶程度的提高,会对实时性有更高要求。
发一张 Here 的地图采集车照片作为对比:
高精度地图数据的采集如果只靠采集车完成,需要投入的精力显然太大。毕竟采集只是第一步,后续的更新维护同样重要。
高德给出的解决方案是通过自身和众包的方式同时进行。自身不用多说,高德采集车的数量会不断增加,覆盖范围也会逐渐往更具体、复杂的道路覆盖。
除此之外,阿里的菜鸟物流车、神州专车等半社会化的商用车也会成为高精度地图数据的采集源。而高德的高精度地图数据,也可能会优先应用在物流、环卫等路线较固定的商用车场景中。
UGC 也会是高德的高精度地图数据来源。在高德的计划中,未来会有很多类似后视镜、行车记录仪等带摄像头的后装硬件,都能向高德回传带有道路数据的照片,作为高精度地图数据的补充。
除此之外,车辆上逐渐增加的传感器,包括激光雷达、毫米波雷达、摄像头、陀螺仪、雨水传感器等,都能够回传包括道路状况、天气状况等高精度地图必须的信息。
当然,这需要高德本身有处理这些数据的能力,目前他们也在进行基于图片数据分析的深度学习(例如路牌、限速等标识的自动识别),并且已经取得了大量数据。随着样本量的增加,识别精度也会不断提高。
通过自身+第三方的数据结合的方式,高德想要尽可能提高高精度地图的精确度及实时性。目前来看,这确实是一个不错的想法。不过想要真的实现的话,还需要有更多的投入,包括技术、资本等等。