- 强连通分量——tarjan算法缩点
小陈同学_
图论算法图论c++
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- 强连通分量-tarjan算法缩点
小陈同学_
算法图论数据结构
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- 2.18学习总结
啊这泪目了
学习数据结构
链式前向星的处理和建立tarjan对割点和缩点的使用拓扑排序链式前向星:预处理:structedge{intfrom;intto;intnext;}e[N];intn,m,head[N],dfn[N],low[N],tot,color[N],num[N],out[N],s,instack[N],id;处理:voidadd(intu,intv){e[++tot].from=u;e[tot].to=v
- 2.17学习总结
啊这泪目了
学习
tarjan【模板】缩点https://www.luogu.com.cn/problem/P3387题目描述给定一个�n个点�m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大。你只需要求出这个权值和。允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次。输入格式第一行两个正整数�,�n,m第二行�n个整数,其中第�i个数��ai表示点�i的点权。第三至�+2m+2
- 史上最系统的的竞赛图讲解:学透竞赛图看这一篇就够了!
准确、系统、简洁地讲算法
算法图论
文章目录定义性质一、兰道定理(竞赛图的判定)比分序列:将每个点的出度从小到大排序的序列。定理内容:定理证明拓展二、竞赛图缩点后拓扑序成链状,拓扑序小的点向所有拓扑序比它大的点连边。(1)与SCC,拓扑序相关推论:1.根据成链状容易发现当不存在位置i满足以下条件,图为强连通图。2.在同一个SCC中在比分序列上是一个区间,根据比分序列可以完成拓扑排序。(无需建图)(2)与三元环和n>=3元环相关a.竞
- POJ 2117 Electricity 题解 Tarjan 割点
kaiserqzyue
算法题目算法图论c++
题目链接:POJ2117Electricity题目描述:给定一张无向图,问删除一个结点后最多会有多少个强连通分量。题解:我们用scc表示初始的图中有多少个强连通分量,该值可以通过DFS计算出来。接下来我们只需要计算出删除每个割点会增加的强连通分量个数cnt即可,答案即为cnt+ans,对于一个强连通分量中的非根结点,用son表示有多少个子结点能够返回到当前结点或者当前结点之前遍历的结点,那么不难发
- POJ 1523 SPF题解 Tarjan 割点
kaiserqzyue
算法题目c++算法图论
题目链接:POJ1523SPF题目描述:给定一张连通的无向图,问哪些结点是割点,分别删除各个割点时会产生几个强连通分量。题解:求割点可以通过Tarjan算法来解决,我们接下来考虑删除一个割点后会产生多少个联通块。在Tarjan算法中,我们判断一个点是否是割点是通过其子结点能否回到遍历过的结点来判断。如果当前遍历的结点存在一个子结点不能够回到已经遍历过的结点,那么当前遍历的结点便是一个割点(这样的依
- Luogu P5058 [ZJOI2004] 嗅探器 题解 Tarjan 割点
kaiserqzyue
算法题目算法图论c++
题目链接:LuoguP5058[ZJOI2004]嗅探器题目描述:给定一张无向图,以及两个点s,t,你需要找到一个点(这个点不能是s或t),这个点被所有s,t之间的路径所经过。如果不存在这样的点,输出Nosolution。如果有多个这样的点,输出编号最小的。题解:我们很容易发现要删除的点一定是割点(按照题意,删除后,s与t不能进行通信,这说明强连通分量增加了)。我们只需要考虑哪些割点是满足条件的。
- 强连通分量(SCC,Strongly Connected Components)学习笔记 & edited in 2024.01.31
taoyiwei17_HNCS
学习笔记
更新日志upd2024.01.31写好文章基本内容upd2024.01.31发表于洛谷upd2024.02.01同步发表于CSDNupd2024.02.01同步发表于博客园cnblogsupd2024.02.01增加内容difficultPRO例题详解——P2746强连通分量(SCC,StronglyConnectedComponents)定义强连通有向图(DAG)中若其中两点xxx,yyy能彼此
- 强连通分量(dfs version)
yan_qiu_ynlchrz
算法整理算法
定义我们称有向图G=(V,E)G=(V,E)G=(V,E)是强连通的当且仅当对于GGG中任意两点u,vu,vu,v都存在一条uuu到vvv的路径和一条vvv到uuu的路径。如果G′G'G′为GGG的一个子图且G′G'G′是强连通的,则称G′G'G′是一个强连通子图。若G′G'G′满足极大性,则称G′G'G′是一个强连通分量。那么,如果我们将所有的强连通分量都缩成一个点,就可以得到一张DAGDAGD
- 算法竞赛——强连通分量
ThXe
ACM教程图论蓝桥杯ACM蓝桥杯ACM强连通分量
强连通分量强连通的定义是:有向图G强连通是指,G中任意两个结点连通。强连通分量(StronglyConnectedComponents,SCC)的定义是:极大的强连通子图也可以说,在强连图图的基础上加入一些点和路径,使得当前的图不在强连通,称原来的强连通的部分为强连通分量。DFS生成树DFS生成树是根据DFS搜索顺序构成的一颗生成树,形如(自上而下,自左而右):有向图的DFS生成树主要有4种边:树
- 图论 —— 图的连通性 —— Kosaraju 算法
Alex_McAvoy
#图论——图的连通性
【概述】Kosaraju算法是最容易理解,最通用的求强连通分量的算法,其关键的部分是同时应用了原图G和反图GT。【基本思想】1.对原图G进行DFS搜索,计算出各顶点完成搜索的时间f2.计算图的反图GT,对反图也进行DFS搜索,但此处搜索时顶点的访问次序不是按照顶点标号的大小,而是按照各顶点f值由大到小的顺序3.反图DFS所得到的森林即对应连通区域。原图原图进行DFS反图反图进行DFS上面提及原图G
- 图论(三):DFS的应用——拓扑排序与强连通分量
Sunburst7
算法图论
本节介绍如何使用DFS对有向无环图进行拓扑排序,以及求强连通分量的算法。目录一拓扑排序二拓扑排序的实现三强连通分量参考一拓扑排序什么是拓扑排序呢?对于一个有向无环图G=(V,E),拓扑排序是G中所有结点的一种线性次序,满足:如果图G包含边(u,v),则结点u在拓扑排序中处于结点v的前面。拓扑排序可以理解为一系列要处理的事件的先后的顺序。边(u,v)代表完成v必须先完成u。注意的是:如果图G包含环路
- 2.4总结
哥别敲代码了
寒假预备役学习算法学习数据结构
前几天把洛谷有关并查集几个题目都尝试写了一下,自己提前去了解了一下最短路径(Floyed算法)和强连通分量这一方面的内容便于后续学习。连通(顾名思义就是把几个点相连,既可以从a到b,也可以从b到a(无向图))强连通示例图弱连通示例图下面这图里就有着三个强连通分量:把三个分量各自可以看成一个点,进行度的运算最短路径(Floyed算法)在写题的时候总是会遇见这种求最短路径的题,所以提前学习了一下(主要
- 什么是染色体
Seurat_Satija
(细胞核的组成部分)染色体(chromosome)是细胞在有丝分裂或减数分裂时DNA存在的特定形式。细胞核内,DNA紧密卷绕在称为组蛋白的蛋白质周围并被包装成一个线状结构。当细胞不分裂时,染色体在细胞核中是不可见的——在显微镜下也是如此。然而,构成染色体的DNA在细胞分裂过程中变得更紧密,染色体在显微镜下可见。每条染色体都有一个叫做着丝粒(点)的收缩点,它将染色体分成两个部分,即“臂”。短臂为“p
- 负环与差分约束
「已注销」
ACM--图论
文章目录负环与差分约束1.基本概念、方法1.1负环1.1.1spfa判负环/正环1.1.2tarjan+缩点判断正环/负环1.1.3拓扑排序判断正环/负环1.2差分约束2.例题2.1负环/正环判定2.1.1spfa判断负环/正环2.1.2tarjan求scc+缩点判断正环/负环2.1.3拓扑排序判断正环/负环2.2差分约束2.2.1spfa差分约束2.2.2tarjan求scc+缩点+dp差分约束
- 数据结构之图
忆梦九洲
数据结构图无环图与有向无环图按存储路径方向分类按存储结构分类
图图(Graph)是比树还要难以理解和学习的“多对多”数据结构,可以认为树也是图的一种。图的知识点众多,按照存储路径的方向分,可分为无向图和有向图,按照图的存储结构分,可分为完全图与有向完全图、连通图与强连通图、连通分量与强连通分量、无环图与有向无环图,其涉及的算法则包括克鲁斯卡尔算法、普里姆算法、迪杰斯特拉算法和弗洛伊德算法等。如下图所示为图的分类。与表和树相同,图虽然有“多对多”的逻辑关系,但
- Tarjan 算法思想求强连通分量及求割点模板(超详细图解)
harry1213812138
图论算法算法tarjan强连通分量割点割边
割点定义在一个无向图中,如果有一个顶点,删除这个顶点及其相关联的边后,图的连通分量增多,就称该点是割点,该点构成的集合就是割点集合。简单来说就是去掉该点后其所在的连通图不再连通,则该点称为割点。若去掉某条边后,该图不再连通,则该边称为桥或割边。若在图G中(如下图),删除uv这条边后,图的连通分量增多,则u和v点称为割点,uv这条边称为桥或割边。显然,有割点的图不是哈密尔顿图。Tarjan算法求强连
- Tarjan 算法及其应用
Kwjdefulgn
图论基础
Tarjan算法及其应用NO.1求强连通分量学习链接:https://www.cnblogs.com/shadowland/p/5872257.html学习心得:dfn[cur]记录访问cur结点的时间戳,low[cur]记录cur结点及其子树中时间戳最小是多少,严格意义上来讲low[cur],记录的是在不回头遍历父节点的前提下第一次能访问到的最早的已遍历结点的时间戳。显然当访问cur结点的子节点
- Tarjan算法
mrcrack
codeforces
Tarjan算法此文https://www.luogu.com.cn/blog/styx-ferryman/chu-tan-tarjan-suan-fa-qiu-qiang-lian-tong-fen-liang-post介绍不错,摘抄如下“tarjan陪伴强联通分量生成树完成后思路才闪光欧拉跑过的七桥古塘让你心驰神往”----《膜你抄》tarjan是一种求强连通分量、双连通分量的常用算法,其拓展
- Tarjan算法超超超详解(ACM/OI)(强连通分量/缩点)(图论)(C++)
seh_sjlj
OIC/C++算法
本文将持续更新。I前置芝士:深度优先搜索与边的分类首先我们来写一段基本的DFS算法(采用链式前向星存图):boolvis[MAXN];voiddfs(intu){vis[u]=true;for(inte=first[u];e;e=nxt[e]){//遍历连接u的每条边intv=go[e];if(!vis[v])dfs(v);//如果没有访问过就往下继续搜}}这段代码我们再熟悉不过了。接下来我们要引
- Tarjan算法与连通性
流苏贺风
图论算法算法dfs强联通图论
Tarjan算法Tarjan与有向图一、强连通定义二、Tarjan算法求强连通分量2.tarjan的构成要素3.算法的分析4.算法的实现11,未被访问:22,被访问过,已经在栈中:5.算法的代码实物三,缩点四,实际应用Tarjan和无向图一,定义和性质二,割边(桥)和E-DCC11,模板22,实际应用三,割点11,概况22,实现四,V-DCC(点双联通分量)1,求v-dcc2,v-dcc特异性缩点
- 超级详细的Tarjan算法
ivysister
acm题tarjan最大连通分量
有向图强连通分量]在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(stronglyconnectedcomponents)。下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。
- 图论 强(双)连通分量tarjan算法
Little_Match_Boy
ACM图论图论算法c++
强(双)连通分量tarjan算法这里挂两个题,第一个题求强联通分量,第二个题求割点先说一下tarjan的读法:taran(taren)(j不发音)hdu5934(tarjan算法+缩点)bombThereareNbombsneedingexploding.Eachbombhasthreeattributes:explodingradiusri,position(xi,yi)andlighting-
- C语言WFC实现绘制Lagrange插值多项式曲线的函数
Ian1025
算法机器学习人工智能c语言开发语言
前言(引用):拉格朗日多项式插值插值方法有许多,常用的、基本的有:拉格朗日多项式插值、牛顿插值、分段线插值、Hermite插值和三次样条插值。这里只将一下拉格朗日多项式插值法:方法应用通缩点说,已知n+1个点x1,x2,…,xn的函数值,可以使用lagrange插值求出一个n次多项式插值函数f(x),f(x)是接近未知原函数p(x)的函数,根据插值函数f(x)求出p(x)的未知点具体引入已知一个未
- 常用图算法实现--Spark
zealscott
使用Spark实现PageRank,强连通分量等图算法PageRank数据准备边:1211523242526273134251151261676871788189810914911011013111211112113141412151网页:123456789101112131415将这两个文件放入HDFS:hdfsdfs-mkdirinput/PageRankhdfsdfs-putlinks.tx
- 算法设计与分析
羊驼冲冲冲
算法学习
目录三个渐进记号分治策略①迭代法②递归树法③主定理法分治的应用堆堆应用动态规划动态规划应用贪心算法贪心算法应用回溯法回溯法应用图图的遍历BFSDFS记录时间戳拓扑排序强连通分量最小生成树流网络NP、P摊还分析三个渐进记号f(n)=O(g(n))其实是代表f(n)∈O(g(n))渐近上界记号OO(g(n))={f(n):存在正常量c和n0,使得对所有n≥n0,有0≤f(n)≤cg(n)}渐近下界记号
- 【AI】AI和点云(2/2)
giszz
人工智能人工智能
目录五、点云的压缩六、点云的体素化序列七、点云增强八、深度学习和点云(接上回)【AI】AI和点云(1/2)-CSDN博客五、点云的压缩点云压缩是点云处理中的一项重要技术,主要用于减少点云数据的存储空间和传输带宽需求,同时尽可能保留点云数据的结构和特征信息。点云压缩可以分为三个主要步骤:数据预处理、数据压缩和数据编码。数据预处理包括数据清洗、坐标转换、数据分块等操作,目的是去除噪声、统一坐标系、减小
- P1262 间谍网络
atm7758258
算法-图论图论
1、思路阅读题目,发现有些间谍可以是被前面的点更新,也就是说,在一开始的时候,把能贿赂的人员从小到达排个序,再使用bfs算法,把他们能到达的人员的贿赂价钱设置为0。有解的情况:首先如果有环,我把环内的最少价钱的那一位买下,则整个环的间谍都被我买下。首先把所有能被贿赂的根据bfs,依次把所有能到达的变为0缩点之后,所有的都变为除了最小的那个,其他的都变为0,因此整个间谍网络只需要10就能买下。但是对
- 【C - 班长竞选】
贝耶儿
题意:大学班级选班长,N个同学均可以发表意见若意见为AB则表示A认为B合适,意见具有传递性,即A认为B合适,B认为C合适,则A也认为C合适勤劳的TT收集了M条意见,想要知道最高票数,并给出一份候选人名单,即所有得票最多的同学。思路:从图中找出所有强连通分量进行缩点,那么首先某一个强连通分量中的人获得了该强连通分量中节点数目减一得票数。他们还会获得其他与之相连的强连通分量的票数。计算出每个节点对应的
- 安装数据库首次应用
Array_06
javaoraclesql
可是为什么再一次失败之后就变成直接跳过那个要求
enter full pathname of java.exe的界面
这个java.exe是你的Oracle 11g安装目录中例如:【F:\app\chen\product\11.2.0\dbhome_1\jdk\jre\bin】下的java.exe 。不是你的电脑安装的java jdk下的java.exe!
注意第一次,使用SQL D
- Weblogic Server Console密码修改和遗忘解决方法
bijian1013
Welogic
在工作中一同事将Weblogic的console的密码忘记了,通过网上查询资料解决,实践整理了一下。
一.修改Console密码
打开weblogic控制台,安全领域 --> myrealm -->&n
- IllegalStateException: Cannot forward a response that is already committed
Cwind
javaServlets
对于初学者来说,一个常见的误解是:当调用 forward() 或者 sendRedirect() 时控制流将会自动跳出原函数。标题所示错误通常是基于此误解而引起的。 示例代码:
protected void doPost() {
if (someCondition) {
sendRedirect();
}
forward(); // Thi
- 基于流的装饰设计模式
木zi_鸣
设计模式
当想要对已有类的对象进行功能增强时,可以定义一个类,将已有对象传入,基于已有的功能,并提供加强功能。
自定义的类成为装饰类
模仿BufferedReader,对Reader进行包装,体现装饰设计模式
装饰类通常会通过构造方法接受被装饰的对象,并基于被装饰的对象功能,提供更强的功能。
装饰模式比继承灵活,避免继承臃肿,降低了类与类之间的关系
装饰类因为增强已有对象,具备的功能该
- Linux中的uniq命令
被触发
linux
Linux命令uniq的作用是过滤重复部分显示文件内容,这个命令读取输入文件,并比较相邻的行。在正常情 况下,第二个及以后更多个重复行将被删去,行比较是根据所用字符集的排序序列进行的。该命令加工后的结果写到输出文件中。输入文件和输出文件必须不同。如 果输入文件用“- ”表示,则从标准输入读取。
AD:
uniq [选项] 文件
说明:这个命令读取输入文件,并比较相邻的行。在正常情况下,第二个
- 正则表达式Pattern
肆无忌惮_
Pattern
正则表达式是符合一定规则的表达式,用来专门操作字符串,对字符创进行匹配,切割,替换,获取。
例如,我们需要对QQ号码格式进行检验
规则是长度6~12位 不能0开头 只能是数字,我们可以一位一位进行比较,利用parseLong进行判断,或者是用正则表达式来匹配[1-9][0-9]{4,14} 或者 [1-9]\d{4,14}
&nbs
- Oracle高级查询之OVER (PARTITION BY ..)
知了ing
oraclesql
一、rank()/dense_rank() over(partition by ...order by ...)
现在客户有这样一个需求,查询每个部门工资最高的雇员的信息,相信有一定oracle应用知识的同学都能写出下面的SQL语句:
select e.ename, e.job, e.sal, e.deptno
from scott.emp e,
(se
- Python调试
矮蛋蛋
pythonpdb
原文地址:
http://blog.csdn.net/xuyuefei1988/article/details/19399137
1、下面网上收罗的资料初学者应该够用了,但对比IBM的Python 代码调试技巧:
IBM:包括 pdb 模块、利用 PyDev 和 Eclipse 集成进行调试、PyCharm 以及 Debug 日志进行调试:
http://www.ibm.com/d
- webservice传递自定义对象时函数为空,以及boolean不对应的问题
alleni123
webservice
今天在客户端调用方法
NodeStatus status=iservice.getNodeStatus().
结果NodeStatus的属性都是null。
进行debug之后,发现服务器端返回的确实是有值的对象。
后来发现原来是因为在客户端,NodeStatus的setter全部被我删除了。
本来是因为逻辑上不需要在客户端使用setter, 结果改了之后竟然不能获取带属性值的
- java如何干掉指针,又如何巧妙的通过引用来操作指针————>说的就是java指针
百合不是茶
C语言的强大在于可以直接操作指针的地址,通过改变指针的地址指向来达到更改地址的目的,又是由于c语言的指针过于强大,初学者很难掌握, java的出现解决了c,c++中指针的问题 java将指针封装在底层,开发人员是不能够去操作指针的地址,但是可以通过引用来间接的操作:
定义一个指针p来指向a的地址(&是地址符号):
- Eclipse打不开,提示“An error has occurred.See the log file ***/.log”
bijian1013
eclipse
打开eclipse工作目录的\.metadata\.log文件,发现如下错误:
!ENTRY org.eclipse.osgi 4 0 2012-09-10 09:28:57.139
!MESSAGE Application error
!STACK 1
java.lang.NoClassDefFoundError: org/eclipse/core/resources/IContai
- spring aop实例annotation方法实现
bijian1013
javaspringAOPannotation
在spring aop实例中我们通过配置xml文件来实现AOP,这里学习使用annotation来实现,使用annotation其实就是指明具体的aspect,pointcut和advice。1.申明一个切面(用一个类来实现)在这个切面里,包括了advice和pointcut
AdviceMethods.jav
- [Velocity一]Velocity语法基础入门
bit1129
velocity
用户和开发人员参考文档
http://velocity.apache.org/engine/releases/velocity-1.7/developer-guide.html
注释
1.行级注释##
2.多行注释#* *#
变量定义
使用$开头的字符串是变量定义,例如$var1, $var2,
赋值
使用#set为变量赋值,例
- 【Kafka十一】关于Kafka的副本管理
bit1129
kafka
1. 关于request.required.acks
request.required.acks控制者Producer写请求的什么时候可以确认写成功,默认是0,
0表示即不进行确认即返回。
1表示Leader写成功即返回,此时还没有进行写数据同步到其它Follower Partition中
-1表示根据指定的最少Partition确认后才返回,这个在
Th
- lua统计nginx内部变量数据
ronin47
lua nginx 统计
server {
listen 80;
server_name photo.domain.com;
location /{set $str $uri;
content_by_lua '
local url = ngx.var.uri
local res = ngx.location.capture(
- java-11.二叉树中节点的最大距离
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class MaxLenInBinTree {
/*
a. 1
/ \
2 3
/ \ / \
4 5 6 7
max=4 pass "root"
- Netty源码学习-ReadTimeoutHandler
bylijinnan
javanetty
ReadTimeoutHandler的实现思路:
开启一个定时任务,如果在指定时间内没有接收到消息,则抛出ReadTimeoutException
这个异常的捕获,在开发中,交给跟在ReadTimeoutHandler后面的ChannelHandler,例如
private final ChannelHandler timeoutHandler =
new ReadTim
- jquery验证上传文件样式及大小(好用)
cngolon
文件上传jquery验证
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script src="jquery1.8/jquery-1.8.0.
- 浏览器兼容【转】
cuishikuan
css浏览器IE
浏览器兼容问题一:不同浏览器的标签默认的外补丁和内补丁不同
问题症状:随便写几个标签,不加样式控制的情况下,各自的margin 和padding差异较大。
碰到频率:100%
解决方案:CSS里 *{margin:0;padding:0;}
备注:这个是最常见的也是最易解决的一个浏览器兼容性问题,几乎所有的CSS文件开头都会用通配符*来设
- Shell特殊变量:Shell $0, $#, $*, $@, $?, $$和命令行参数
daizj
shell$#$?特殊变量
前面已经讲到,变量名只能包含数字、字母和下划线,因为某些包含其他字符的变量有特殊含义,这样的变量被称为特殊变量。例如,$ 表示当前Shell进程的ID,即pid,看下面的代码:
$echo $$
运行结果
29949
特殊变量列表 变量 含义 $0 当前脚本的文件名 $n 传递给脚本或函数的参数。n 是一个数字,表示第几个参数。例如,第一个
- 程序设计KISS 原则-------KEEP IT SIMPLE, STUPID!
dcj3sjt126com
unix
翻到一本书,讲到编程一般原则是kiss:Keep It Simple, Stupid.对这个原则深有体会,其实不仅编程如此,而且系统架构也是如此。
KEEP IT SIMPLE, STUPID! 编写只做一件事情,并且要做好的程序;编写可以在一起工作的程序,编写处理文本流的程序,因为这是通用的接口。这就是UNIX哲学.所有的哲学真 正的浓缩为一个铁一样的定律,高明的工程师的神圣的“KISS 原
- android Activity间List传值
dcj3sjt126com
Activity
第一个Activity:
import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map;import android.app.Activity;import android.content.Intent;import android.os.Bundle;import a
- tomcat 设置java虚拟机内存
eksliang
tomcat 内存设置
转载请出自出处:http://eksliang.iteye.com/blog/2117772
http://eksliang.iteye.com/
常见的内存溢出有以下两种:
java.lang.OutOfMemoryError: PermGen space
java.lang.OutOfMemoryError: Java heap space
------------
- Android 数据库事务处理
gqdy365
android
使用SQLiteDatabase的beginTransaction()方法可以开启一个事务,程序执行到endTransaction() 方法时会检查事务的标志是否为成功,如果程序执行到endTransaction()之前调用了setTransactionSuccessful() 方法设置事务的标志为成功则提交事务,如果没有调用setTransactionSuccessful() 方法则回滚事务。事
- Java 打开浏览器
hw1287789687
打开网址open浏览器open browser打开url打开浏览器
使用java 语言如何打开浏览器呢?
我们先研究下在cmd窗口中,如何打开网址
使用IE 打开
D:\software\bin>cmd /c start iexplore http://hw1287789687.iteye.com/blog/2153709
使用火狐打开
D:\software\bin>cmd /c start firefox http://hw1287789
- ReplaceGoogleCDN:将 Google CDN 替换为国内的 Chrome 插件
justjavac
chromeGooglegoogle apichrome插件
Chrome Web Store 安装地址: https://chrome.google.com/webstore/detail/replace-google-cdn/kpampjmfiopfpkkepbllemkibefkiice
由于众所周知的原因,只需替换一个域名就可以继续使用Google提供的前端公共库了。 同样,通过script标记引用这些资源,让网站访问速度瞬间提速吧
- 进程VS.线程
m635674608
线程
资料来源:
http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001397567993007df355a3394da48f0bf14960f0c78753f000 1、Apache最早就是采用多进程模式 2、IIS服务器默认采用多线程模式 3、多进程优缺点 优点:
多进程模式最大
- Linux下安装MemCached
字符串
memcached
前提准备:1. MemCached目前最新版本为:1.4.22,可以从官网下载到。2. MemCached依赖libevent,因此在安装MemCached之前需要先安装libevent。2.1 运行下面命令,查看系统是否已安装libevent。[root@SecurityCheck ~]# rpm -qa|grep libevent libevent-headers-1.4.13-4.el6.n
- java设计模式之--jdk动态代理(实现aop编程)
Supanccy2013
javaDAO设计模式AOP
与静态代理类对照的是动态代理类,动态代理类的字节码在程序运行时由Java反射机制动态生成,无需程序员手工编写它的源代码。动态代理类不仅简化了编程工作,而且提高了软件系统的可扩展性,因为Java 反射机制可以生成任意类型的动态代理类。java.lang.reflect 包中的Proxy类和InvocationHandler 接口提供了生成动态代理类的能力。
&
- Spring 4.2新特性-对java8默认方法(default method)定义Bean的支持
wiselyman
spring 4
2.1 默认方法(default method)
java8引入了一个default medthod;
用来扩展已有的接口,在对已有接口的使用不产生任何影响的情况下,添加扩展
使用default关键字
Spring 4.2支持加载在默认方法里声明的bean
2.2
将要被声明成bean的类
public class DemoService {