小波变换网文精粹:小波变换和motion信号处理(五)

小波变换网文精粹:小波变换和motion信号处理(五)

转自:http://www.kunli.info/2011/02/15/fourier-wavelet-motion-signal-1/

五、小波基的特性

        小波变换的本质和傅立叶变换类似,也是用精心挑选的basis来表示信号方程。每个小波变换都会有一个mother wavelet,我们称之为母小波,同时还有一个scaling function,中文是尺度函数,也被成为父小波。任何小波变换的basis函数,其实就是对这个母小波和父小波缩放和平移后的集合。下面这附图就是某种小波的示意图:


        从这里看出,这里的缩放倍数都是2的级数,平移的大小和当前其缩放的程度有关。这样的好处是,小波的basis函数既有高频又有低频,同时还覆盖了时域。对于这点,我们会在之后详细阐述。

小波展开的形式通常都是这样(注意,这个只是近似表达,严谨的展开形式后面会再解释):

            

其中的 就是小波级数,这些级数的组合就形成了小波变换中的基basis。和傅立叶级数有一点不同的是,小波级数通常是orthonormal basis,也就是说,它们不仅两两正交,还归一化了。小波级数通常有很多种,但是都符合下面这些特性:

1. 小波变换对不管是一维还是高维的大部分信号都能cover很好。这个和傅立叶级数有很大区别。后者最擅长的是把一维的,类三角波连续变量函数信号映射到一维系数序列上,但对于突变信号或任何高维的非三角波信号则几乎无能为力。

2. 围绕小波级数的展开能够在时域和频域上同时定位信号,也就是说,信号的大部分能量都能由非常少的展开系数,比如a_{j,k},决定。这个特性是得益于小波变换是二维变换。我们从两者展开的表达式就可以看出来,傅立叶级数是 ,而小波级数是 。

3. 从信号算出展开系数a需要很方便。普遍情况下,小波变换的复杂度是O(Nlog(N)),和FFT相当。有不少很快的变换甚至可以达到O(N),也就是说,计算复杂度和信号长度是线性的关系。小波变换的等式定义,可以没有积分,没有微分,仅仅是乘法和加法即可以做到,和现代计算机的计算指令完全match。

        可能看到这里,你会有点晕了。这些特性是怎么来的?为什么需要有这些特性?具体到实践中,它们到底是怎么给小波变换带来比别人更强的好处的?计算简单这个可能好理解,因为前面我们已经讲过正交特性了。那么二维变换呢?频域和时域定位是如何进行的呢?恩,我完全理解你的感受,因为当初我看别的文章,也是有这些问题,就是看不到答案。要说想完全理解小波变换的这些本质,需要详细的讲解,所以我就把它放到下一篇了。

你可能感兴趣的:(小波信号处理)