代码git地址:https://github.com/dmlc/dgl/blob/master/examples/pytorch/graphsage/train_sampling.py
dgl在最近的4月份更新的0.4.3版本中增加了dgl.sampling.sample_neighbors的模块,用来采样邻居节点,之前的版本里面实现的graphsage没有做采样,这里记录一下实现的代码过程,对一些地方加了注释:
有几个比较重要的点:
1.RedditDataset数据集232965个节点,节点向量维度是602,edges=114848857,n_classes=41,train_nid 13w训练样本的id
2.dataloader每次yeild一个batch的seed是依次从节点id里取的(见DataLoader立马的batchsamper),然后自定义的collate_fn函数利用这个seed来采样k阶的邻居节点,这里是采样了2阶,采样是取的边数,1000个点采样10000条边,生成第一个block1000-9640的一个二部图,利用9640采样25倍24100的边,生成第二个block9640-10w+节点的二部图,注意的是为了方便计算这里的二部图里src节点里面包含了dst的节点。
3.训练的时候,SAGE网络框架里定义了两层的dglnn.SAGEConv,第一层是602 * 16,第二层转换是16 * 41,其中第一层SAGEConv处理的是block9640-10w+节点的二部图,把src节点的向量发送到dst节点并取均值,加上dst的节点的原始特征向量后,利用全连接转换602 * 16 , 第二层SAGEConv处理
block1000-9640的二部图,同样取均值转换再转换16 * 41。
4.在Inference时候,因为需要采样所以预测过程有点复杂,先算完一层结果再算另一层的结果;
5.采样的函数中是实现了一篇论文中的方法,看起来挺复杂@_@
import dgl
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.multiprocessing as mp
from torch.utils.data import DataLoader
import dgl.function as fn
import dgl.nn.pytorch as dglnn
import time
import argparse
from _thread import start_new_thread
from functools import wraps
from dgl.data import RedditDataset
import tqdm
import traceback
#### Neighbor sampler
class NeighborSampler(object):
def __init__(self, g, fanouts):
self.g = g
self.fanouts = fanouts
def sample_blocks(self, seeds):
seeds = th.LongTensor(np.asarray(seeds)) #这个seed一开始是dataloader里的batchsampler,按照batch大小依次把graph的id一个个yeild出来
blocks = []
for fanout in self.fanouts: #[10,25]
# For each seed node, sample ``fanout`` neighbors. 这里的sampler是在v0.4.3版本新加入
frontier = dgl.sampling.sample_neighbors(g, seeds, fanout, replace=True) #利用1000个seeds得到的10000个边?节点
# Then we compact the frontier into a bipartite graph for message passing.
block = dgl.to_block(frontier, seeds) # to_black操作是把将采样的子图转换为适合计算的二部图,这里特殊的地方在于block.srcdata中的id是包含了dstnodeid的
# Obtain the seed nodes for next layer.
seeds = block.srcdata[dgl.NID]
# 一个种子的长度是1000,就是一个batch的索引,1000个一个batch,采样10个邻居,得到10000边9640个点,再采样25个点,得到241000个边,105693个点,Blocks里面是两个子图
blocks.insert(0, block)
return blocks
class SAGE(nn.Module):
def __init__(self,
in_feats,
n_hidden,
n_classes,
n_layers,
activation,
dropout):
super().__init__()
self.n_layers = n_layers
self.n_hidden = n_hidden
self.n_classes = n_classes
self.layers = nn.ModuleList()
self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, 'mean'))
for i in range(1, n_layers - 1):
self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, 'mean'))
self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, 'mean'))
self.dropout = nn.Dropout(dropout)
self.activation = activation
def forward(self, blocks, x):
h = x #第一轮输入的x就是采样两次后的二阶相邻点,维度是10w+*602,其实g.ndata的原始标签
for l, (layer, block) in enumerate(zip(self.layers, blocks)):
# We need to first copy the representation of nodes on the RHS from the,两层SAGEConv分别对应两个block
# appropriate nodes on the LHS.
# Note that the shape of h is (num_nodes_LHS, D) and the shape of h_dst
# would be (num_nodes_RHS, D),blocks0是左9640右10w+的二部图,block1是左1000右9640的二部图
h_dst = h[:block.number_of_dst_nodes()] # 每一阶的节点里面都包含了他的dst节点在序列的最前面,方便计算。但是这个是怎么抽样的?dgl.to_blockd函数定义里有说。。
# Then we compute the updated representation on the RHS.
# The shape of h now becomes (num_nodes_RHS, D)
h = layer(block, (h, h_dst)) #block是dglnn.SAGEConv().forward(graph,feat)中的graph,feat=(h,h_dst),h是10w的起始节点特征,h_dst是目的节点的特征
if l != len(self.layers) - 1: #当汇聚方式是mean的时候,SAGEConv实现了,把h的所有特征发送到dst节点,根据dst节点求平均,加上dst节点的原始特征,接一个fc层输出dst节点的新的特征,如果是gcn的话,其实跟mean基本一样,具体可以看dglnn.SAGEConv里面的4种聚合函数的定义,所谓定义graphsage需要学习的参数权重就是这里SAGEConv内部的权重,比如这里602的维度转换为41的权重。
h = self.activation(h)
h = self.dropout(h)
return h
def inference(self, g, x, batch_size, device):
"""
Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling).
g : the entire graph.
x : the input of entire node set.
The inference code is written in a fashion that it could handle any number of nodes and
layers.
"""
# During inference with sampling, multi-layer blocks are very inefficient because
# lots of computations in the first few layers are repeated.
# Therefore, we compute the representation of all nodes layer by layer. The nodes
# on each layer are of course splitted in batches.
# TODO: can we standardize this?
nodes = th.arange(g.number_of_nodes())
for l, layer in enumerate(self.layers):
y = th.zeros(g.number_of_nodes(), self.n_hidden if l != len(self.layers) - 1 else self.n_classes)
for start in tqdm.trange(0, len(nodes), batch_size):
end = start + batch_size
batch_nodes = nodes[start:end]
block = dgl.to_block(dgl.in_subgraph(g, batch_nodes), batch_nodes)
input_nodes = block.srcdata[dgl.NID]
h = x[input_nodes].to(device)
h_dst = h[:block.number_of_dst_nodes()]
h = layer(block, (h, h_dst))
if l != len(self.layers) - 1:
h = self.activation(h)
h = self.dropout(h)
y[start:end] = h.cpu()
x = y
return y
def prepare_mp(g):
"""
Explicitly materialize the CSR, CSC and COO representation of the given graph
so that they could be shared via copy-on-write to sampler workers and GPU
trainers.
This is a workaround before full shared memory support on heterogeneous graphs.
"""
g.in_degree(0)
g.out_degree(0)
g.find_edges([0])
def compute_acc(pred, labels):
"""
Compute the accuracy of prediction given the labels.
"""
return (th.argmax(pred, dim=1) == labels).float().sum() / len(pred)
def evaluate(model, g, inputs, labels, val_mask, batch_size, device):
"""
Evaluate the model on the validation set specified by ``val_mask``.
g : The entire graph.
inputs : The features of all the nodes.
labels : The labels of all the nodes.
val_mask : A 0-1 mask indicating which nodes do we actually compute the accuracy for.
batch_size : Number of nodes to compute at the same time.
device : The GPU device to evaluate on.
"""
model.eval()
with th.no_grad():
pred = model.inference(g, inputs, batch_size, device)
model.train()
return compute_acc(pred[val_mask], labels[val_mask])
def load_subtensor(g, labels, seeds, input_nodes, device):
"""
Copys features and labels of a set of nodes onto GPU.
"""
batch_inputs = g.ndata['features'][input_nodes].to(device)
batch_labels = labels[seeds].to(device)
return batch_inputs, batch_labels
#### Entry point
def run(args, device, data):
# Unpack data, in_feats=602 ,nodes=232965 ,edges=114848857,n_classes=41,train_nid 13w训练样本的id
train_mask, val_mask, in_feats, labels, n_classes, g = data
train_nid = th.LongTensor(np.nonzero(train_mask)[0]) #np.nonzeros()返回元组(分别描述非0元素的位置二维)
val_nid = th.LongTensor(np.nonzero(val_mask)[0])
train_mask = th.BoolTensor(train_mask)
val_mask = th.BoolTensor(val_mask)
# Create sampler初始化,默认的fanout是10,25,这个的意思是一阶抽10倍,2阶抽25倍
sampler = NeighborSampler(g, [int(fanout) for fanout in args.fan_out.split(',')])
# Create PyTorch DataLoader for constructing blocks,train—id是15w的数据索引,batch=1000,sampler抽样器,
dataloader = DataLoader(
dataset=train_nid.numpy(),
batch_size=args.batch_size,
collate_fn=sampler.sample_blocks, #样本不能被batch整除时,需要的处理函数,这里其实是对1000个种子id做抽样,返回block二部图的方法
shuffle=True,
drop_last=False,
num_workers=args.num_workers)
# Define model and optimizer ,输入维度602,隐层16,n_classes =41
model = SAGE(in_feats, args.num_hidden, n_classes, args.num_layers, F.relu, args.dropout)
model = model.to(device)
loss_fcn = nn.CrossEntropyLoss()
loss_fcn = loss_fcn.to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
# Training loop
avg = 0
iter_tput = []
for epoch in range(args.num_epochs):
tic = time.time()
# Loop over the dataloader to sample the computation dependency graph as a list of
# blocks.
for step, blocks in enumerate(dataloader):
tic_step = time.time()
# The nodes for input lies at the LHS side of the first block.
# The nodes for output lies at the RHS side of the last block.
input_nodes = blocks[0].srcdata[dgl.NID] #block0是一个二部图,就是左边9640右边105693个节点(每次采样数量会有变化!!),边是2410000的二部图,
seeds = blocks[-1].dstdata[dgl.NID] #seed是种子点1000个,一阶采样是10个边,得到1000-9640的二部图block1,在用9640采样25边,得到9640-105693的二部图block0
# Load the input features as well as output labels,这里类似把这二hop的105693*603的矩阵作为输出,最后输出的是1000个点。
batch_inputs, batch_labels = load_subtensor(g, labels, seeds, input_nodes, device) #input_nodes是二阶点的id,batch_inputs是二阶点对应的特征
# Compute loss and prediction
batch_pred = model(blocks, batch_inputs)
loss = loss_fcn(batch_pred, batch_labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
iter_tput.append(len(seeds) / (time.time() - tic_step))
if step % args.log_every == 0:
acc = compute_acc(batch_pred, batch_labels)
gpu_mem_alloc = th.cuda.max_memory_allocated() / 1000000 if th.cuda.is_available() else 0
print('Epoch {:05d} | Step {:05d} | Loss {:.4f} | Train Acc {:.4f} | Speed (samples/sec) {:.4f} | GPU {:.1f} MiB'.format(
epoch, step, loss.item(), acc.item(), np.mean(iter_tput[3:]), gpu_mem_alloc))
toc = time.time()
print('Epoch Time(s): {:.4f}'.format(toc - tic))
if epoch >= 5:
avg += toc - tic
if epoch % args.eval_every == 0 and epoch != 0:
eval_acc = evaluate(model, g, g.ndata['features'], labels, val_mask, args.batch_size, device)
print('Eval Acc {:.4f}'.format(eval_acc))
print('Avg epoch time: {}'.format(avg / (epoch - 4)))
if __name__ == '__main__':
argparser = argparse.ArgumentParser("multi-gpu training")
argparser.add_argument('--gpu', type=int, default=0,
help="GPU device ID. Use -1 for CPU training")
argparser.add_argument('--num-epochs', type=int, default=20)
argparser.add_argument('--num-hidden', type=int, default=16)
argparser.add_argument('--num-layers', type=int, default=2)
argparser.add_argument('--fan-out', type=str, default='10,25')
argparser.add_argument('--batch-size', type=int, default=1000)
argparser.add_argument('--log-every', type=int, default=20)
argparser.add_argument('--eval-every', type=int, default=5)
argparser.add_argument('--lr', type=float, default=0.003)
argparser.add_argument('--dropout', type=float, default=0.5)
argparser.add_argument('--num-workers', type=int, default=0,
help="Number of sampling processes. Use 0 for no extra process.")
args = argparser.parse_args()
if args.gpu >= 0:
device = th.device('cuda:%d' % args.gpu)
else:
device = th.device('cpu')
# load reddit data
data = RedditDataset(self_loop=True)
train_mask = data.train_mask
val_mask = data.val_mask
features = th.Tensor(data.features)
in_feats = features.shape[1]
labels = th.LongTensor(data.labels)
n_classes = data.num_labels
# Construct graph
g = dgl.graph(data.graph.all_edges())
g.ndata['features'] = features
prepare_mp(g)
# Pack data
data = train_mask, val_mask, in_feats, labels, n_classes, g
run(args, device, data)