- MoveNet: PyTorch实现的轻量级人体姿态估计框架
侯深业Dorian
MoveNet:PyTorch实现的轻量级人体姿态估计框架movenet.pytorch项目地址:https://gitcode.com/gh_mirrors/mo/movenet.pytorchMoveNet是一个基于PyTorch的人体姿态估计算法实现,由开发者fire717贡献至GitCode平台。该项目旨在提供一个高效、易用的解决方案,用于实时处理视频或图像中的人体动作识别。通过其强大的性
- python计算机视觉第四章----照相机模型与增强现实
weixin_45154388
文章目录1、针孔照相机模型1.1照相机矩阵1.2三维点的投影1.3照相机矩阵的分解1.4照相机中心2、照相机标定3、以平面和标记物进行姿态估计4、增强现实4.1PyGame和PyOpenGL4.2从照相机矩阵到OpenGL格式4.3在图像中放置物体1、针孔照相机模型针孔照相机模型(有时称为射影照相机模型)是计算机视觉中广泛使用的照相机模型。对于大多数应用来说,针孔照相机模型简单,并且具有足够的精确
- Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation
MatthewHsw
SimplePose
arxiv:https://arxiv.org/pdf/1911.10529.pdfgithub:https://github.com/jialee93/Improved-Body-Parts原作者在知乎有讲解,链接既然是Rethinking,那么就要先只出需要rethinking的内容.文章主要针对于人体姿态估计中的bottom-up的方法,提出了关于bottom-up方法里的一些问题的思考:人
- 基于x86 平台opencv的图像采集和seetaface6的人脸朝向姿态估计功能
小菜鸟学开发
图像处理相关移植及应用opencv人工智能计算机视觉
目录一、概述二、环境要求2.1硬件环境2.2软件环境三、开发流程3.1编写测试3.2配置资源文件3.2验证功能一、概述本文档是针对x86平台opencv的图像采集和seetaface6的人脸朝向姿态估计功能,opencv通过摄像头采集视频图像,将采集的视频图像送给seetaface6的人脸朝向姿态估计模块从而实现人脸朝向姿态估计功能。测试结果如下图所示:人脸朝向姿态估计识别结果本编者,不好意思露脸
- 【论文阅读】【yolo系列】YOLO-Pose的论文阅读
magic_ll
yolo系列深度学习相关的论文阅读论文阅读YOLO
Abstract我们介绍YOLO-pose,一种无热图联合检测的新方法,基于流行的YOLO目标检测框架的图像二维多人姿态估计。【现有方法的问题】现有的基于热图的两阶段方法是次优的,因为它们不是端到端可训练的,训练依赖于surrogateL1loss,该损失不能直接优化评估指标–目标关键点相似度(OKS)。【ours优势:端到端训练,并优化OKS指标本身,无复杂的后处理】该模型学习了在一次前向传递中
- 3D人体姿态估计(教程+代码)
毕设阿力
3d计算机视觉深度学习
3D人体姿态估计是指通过计算机视觉技术和深度学习算法,从图像或视频数据中准确地推测出人体的三维姿态信息,包括关节位置、角度和运动轨迹等。这项技术在虚拟现实、增强现实、运动分析、人体动作捕捉等领域具有广泛的应用前景。实现3D人体姿态估计的关键挑战之一是从二维图像中还原出人体的三维结构。通常,这需要使用多视角图像、深度传感器或者先进的深度学习模型来提取更丰富的信息以重建三维姿态。目前,基于深度学习的方
- 论文阅读:《Deep Learning-Based Human Pose Estimation: A Survey》——Part 1:2D HPE
自信且放光芒66
深度学习论文阅读深度学习人工智能
目录人体姿态识别概述论文框架HPE分类人体建模模型二维单人姿态估计回归方法目前发展优化基于热图的方法基于CNN的几个网络利用身体结构信息提供构建HPE网络视频序列中的人体姿态估计2D多人姿态识别方法自上而下自下而上2DHPE总结数据集和评估指标2DHPE数据集2DHPE评价指标2DHPE方法性能的比较单人2DHPE多人2DHPE未来展望人体姿态识别概述应用模块:人机交互、运动分析、增强现实、虚拟现
- 利用YOLOv8 pose estimation 进行 人的 头部等马赛克
shiter
大数据+AI赋能行业助力企业数字化转型最佳实践案例YOLO
文章大纲马赛克几种OpenCV实现马赛克的方法高斯模糊poseestimation定位并模糊:三角形的外接圆与膨胀系数实现实现代码实现效果参考文献与学习路径之前写过一个文章记录,怎么对人进行目标检测后打码,但是人脸识别有个问题是,很多人的背影,或者侧面无法识别出来人脸,那么我们就可以用姿态估计中的关键点信息进行补充,对人头进行打码,从而进一步的保护隐私信息。目标跟踪与检测后进行OpenCV人脸识别
- 论文解读《Zero-Shot Category-Level Object Pose Estimation》类别级6D位姿估计
ZYLer_
6D位姿估计人工智能计算机视觉
论文:《Zero-ShotCategory-LevelObjectPoseEstimation》该文整体感觉不难,处理流程比较新颖,可以重点参考。Code:https://github.com/applied-ai-lab/zero-shot-pose(48star)摘要:解决问题:实例级姿态估计的问题。=>**零样本(也就是预测未见过的物体(没有该实例的数据标记和CAD模型),类别级)**预测来
- 论文解读《Gen6D: Generalizable Model-Free 6-DoF Object Pose Estimation from RGB Images》 小样本6D位姿估计
ZYLer_
6D位姿估计机器学习人工智能计算机视觉3d深度学习
论文:《Gen6D:GeneralizableModel-Free6-DoFObjectPoseEstimationfromRGBImages》Code:https://github.com/liuyuan-pal/gen6d(469star)摘要:现有的可推广姿态估计器要么需要高质量的对象模型,要么在测试时需要额外的深度图或对象掩码,这大大限制了其应用范围。为了满足实际应用中的需求,我们认为姿态
- 最新姿态估计研究进展
a微风掠过
最新姿态估计研究进展自上而下:就是先检测包含人的框,即humanproposal,然后对框子中的人进行姿态估计。一般RCNN(区域CNN就是这个思路)自下而上:先检测keypoint,然后根据热力图、点与点之间连接的概率,根据图论知识,基于PAF(部分亲和字段)将关键点连接起来,将关键点分组到人。1、CMU:openpose研究多人的姿态估计运行环境:caffe自下而上,关键点被分组到人的实例时间
- 姿态估计概述
Diros1g
姿态估计
定义和优势单目摄像机拍摄的二维图像中预测行人的人体关键点坐标,为其他任务做支持如行人重识别、动作识别。目前分类两类:单人和多人基于计算机视觉的人体姿态佶计不需要额外的穿戴设备,该技术比传统的穿戴式动作捕捉技术成本更加低廉且灵活性更高人体姿态表示形式1.二位坐标关键点(人体主要关节)表达方式以二位坐标的形式(x,y),方法简洁,无序后处理2.空间热力图回归的数据是关键点落在该坐标的概率,优点定位更精
- 【iOS ARKit】3D人体姿态估计实例
扬帆起航&d
ios3d
与2D人体姿态检测一样,在ARKit中,我们不必关心底层的人体骨骼关节点检测算法,也不必自己去调用这些算法,在运行使用ARBodyTrackingConfiguration配置的ARSession之后,基于摄像头图像的3D人体姿态估计任务也会启动,我们可以通过session(_session:ARSession,didUpdateanchors:[ARAnchor])代理方法直接获取检测到的ARB
- 【iOS ARKit】3D 人体姿态估计
扬帆起航&d
ios3d
与基于屏幕空间的2D人体姿态估计不同,3D人体姿态估计是尝试还原人体在三维世界中的形状与姿态,包括深度信息。绝大多数的现有3D人体姿态估计方法依赖2D人体姿态估计,通过获取2D人体姿态后再构建神经网络算法,实现从2D到3D人体姿态的映射。在ARKit中,由于是采用计算机视觉的方式估计人体姿态,与2D人体姿态估计一样,3D人体姿态估计也受到遮挡、光照、姿态、视角的影响,并且相比于2D人体姿态估计,3
- 90+深度学习开源数据集整理|包括目标检测、工业缺陷、图像分割等多个方向...
小白学视觉
深度学习目标检测计算机视觉人工智能机器学习
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达导读本文整理汇总了90+深度学习各方向的开源数据集,包含了小目标检测、目标检测、工业缺陷检测、人脸识别、姿态估计、图像分割、图像识别等方向。小目标检测1.AI-TOD航空图像数据集数据集下载地址:http://m6z.cn/5MjlYkAI-TOD在28,036张航拍图像中包含8个类别的700,621个对象实例。与现有航拍图像中
- 最强Pose模型RTMO开源 | 基于YOLO架构再设计,9MB+9ms性能完爆YOLO-Pose
AI视觉网奇
深度学习基础姿态检测YOLO深度学习
实时多人在图像中的姿态估计面临着在速度和精度之间实现平衡的重大挑战。尽管两阶段的上下文方法在图像中人数增加时会减慢速度,但现有的单阶段方法往往无法同时实现高精度和实时性能。本文介绍了RTMO,这是一个单阶段姿态估计框架,通过在YOLO架构中使用双一维Heatmap来表示关键点,实现与自上而下方法相当的准确度,同时保持高速度。作者提出了一种动态坐标分类器和一种定制的损失函数,用于Heatmap学习,
- 论文学习笔记:PoseFix: Model-agnostic General Human Pose Refinement Network
wangyc1208
姿态估计
论文:https://arxiv.org/abs/1812.03595代码:https://github.com/mks0601/PoseFix_RELEASE—————————————————————————————————————————————————目标:多人姿态估计:本篇论文主要工作是利用一个人体姿势优化网络,从输入图像和姿势中对人体姿态进行优化。大概的效果如下图:———————————
- yolov8+多算法多目标追踪+实例分割+目标检测+姿态估计
毕设阿力
计算机视觉YOLO目标检测
YOLOv8是一种先进的目标检测算法,结合多种算法实现多目标追踪、实例分割和姿态估计功能。该算法在计算机视觉领域具有广泛的应用。首先,YOLOv8算法采用了YouOnlyLookOnce(YOLO)的思想,通过单次前向传递将目标检测问题转化为回归问题。它使用了深度卷积神经网络,能够快速而准确地检测图像中的多个目标。相比于传统的目标检测方法,YOLOv8具有更高的检测速度和更好的性能。其次,YOLO
- 多只动物3D姿态估计与行为识别系统
tzc_fly
论文阅读笔记人工智能
动物社会行为的量化是动物科学研究的重要步骤。虽然现有的深度学习方法已经实现了对常见动物的精确姿态估计、识别和行为分类,但由于缺乏注释良好的数据集,其应用依然受到挑战。因此该研究展示了一个计算框架,即社会行为图谱(SBeA,SocialBehaviorAtlas),用于克服由有限数据集引起的问题。SBeA使用数量很少的labelledframes进行多个动物的3D姿态估计,实现后续的无标签识别。SB
- 轻量级3D姿态估计
AI视觉网奇
姿态检测深度学习宝典深度学习神经网络
本文分享一款可以跑在手机上的3d姿态估计网络。效果图:算力3.92GFLOPS,而且平均每关节位置误差(MPJPE),也只有大约5厘米。用的TensorFlow平台开发,开源了onnx模型。输入是目标检测后的人体图,人体检测用的yolov5。网络结构:编码器-解码器在编码器用于全局特征提取,而解码器进行姿态估计的基础架构,研究团队对其主干网络、激活函数,以及Skipconcatenation功能都
- 基于 pytorch-openpose 实现 “多目标” 人体姿态估计
北桥苏
pytorch人工智能python
前言还记得上次通过MediaPipe估计人体姿态关键点驱动3D角色模型,虽然节省了动作K帧时间,但是网上还有一种似乎更方便的方法。MagicAnimate就是其一,说是只要提供一张人物图片和一段动作视频(舞蹈武术等),就可以完成图片人物转视频。于是我就去官网体验了一下,发现动作的视频长度不能超过5秒,当然,如果说要整长视频可以切多段处理再合成解决。主要的还是视频需要那种背景相对较纯的,不然提交表单
- 【时间序列篇】基于LSTM的序列分类-Pytorch实现 part3 化为己用
钟的子期
深度学习lstm分类pytorch
系列文章目录【时间序列篇】基于LSTM的序列分类-Pytorch实现part1案例复现【时间序列篇】基于LSTM的序列分类-Pytorch实现part2自有数据集构建【时间序列篇】基于LSTM的序列分类-Pytorch实现part3化为己用在一个人体姿态估计的任务中,需要用深度学习模型来进行序列分类。化为己用,实现成功。文章目录系列文章目录前言一、模型训练1导入库和自用函数2导入数据集3设备部署4
- 【时间序列篇】基于LSTM的序列分类-Pytorch实现 part2 自有数据集构建
钟的子期
深度学习lstm分类pytorch
系列文章目录【时间序列篇】基于LSTM的序列分类-Pytorch实现part1案例复现【时间序列篇】基于LSTM的序列分类-Pytorch实现part2自有数据集构建【时间序列篇】基于LSTM的序列分类-Pytorch实现part3化为己用在一个人体姿态估计的任务中,需要用深度学习模型来进行序列分类。时间花费最多的是在数据集的处理上。这一节主要内容就是对数据集的处理。文章目录系列文章目录前言一、任
- 最新!无需任何SFM预处理,实现精确相机姿态估计和逼真场景重建
3DCV
人工智能计算机视觉算法学习深度学习
作者:石昊|来源:3DCV在公众号「3DCV」后台,回复「原论文」可获取论文pdf从图像序列中进行相机姿态估计和新视角合成的问题。以往的方法在处理大相机运动时存在困难,或者需要非常长的训练时间。为了解决这个问题,本文提出了一种新的端到端框架,利用三维高斯点云表示场景,并结合视频流中的连续性进行相机姿态估计和新视角合成。与NeRF等方法不同,本文的方法利用显式的点云表示场景,通过利用三维高斯点云的能
- 开启虚拟人物互动新时代:探索相芯Avatar SDK驱动功能(Android)
相芯科技Faceunity
android实时音视频图像处理计算机视觉opencv
相芯SDK提供的Avatar驱动功能是一种基于人工智能技术的功能,它可以通过用户的面部表情和动作来实时驱动和控制虚拟角色或虚拟人物。这个功能可以将用户的面部表情和动作实时映射到虚拟角色身上,使得虚拟角色能够模仿和响应用户的实时表情和动作。具体来说,相芯SDK的Avatar驱动功能利用了人脸识别、人脸关键点检测、面部表情识别和姿态估计等技术。通过实时识别和分析用户的面部表情和姿态,SDK能够生成相应
- 基于YOLOv8的目标识别、计数、电子围栏的项目开发过程
挑大梁
机器视觉YOLO人工智能python算法目标检测目标跟踪pytorch
0前言用于生产环境中物体检测、识别、跟踪,人、车流量统计,越界安全识别1YOLOv8概述YOLOv8是Ultralytics的YOLO的最新版本。作为一种前沿、最先进(SOTA)的模型,YOLOv8在之前版本的成功基础上引入了新功能和改进,以提高性能、灵活性和效率。YOLOv8支持全范围的视觉AI任务,包括检测、分割,、姿态估计、跟踪和分类。这种多功能性使用户能够利用YOLOv8的功能应对多种应用
- OpenCV 新版滴 4.5.1 发布啦!
AAI机器之心
opencv人工智能计算机视觉机器学习dnnKNNcnn
发布亮点:OpenCVGithub项目终于突破50000stars!新的里程碑~这次发布的特性包括:集成更多的GSoC2020项目的结果,包括:开发了OpenCV.jsDNN模块,以方便再网页中使用,并提供了相关教程。图像分类目标检测风格迁移语义分割姿态估计OpenCV.jsWASMSIMD优化2.0,网页端调用OpenCV更快了新增文本检测和识别高级APISIFT算法优化,主要是16位整型高斯滤
- CVPR 2023: Analyzing and Diagnosing Pose Estimation With Attributions
结构化文摘
人工智能机器学习深度学习
我们从以下六个维度对论文选题进行分类:1.研究重点:姿态估计:这个类别涵盖了旨在直接预测来自各种输入(如图像或视频)的身体部位(关节、肢体)的空间配置的研究。例如,使用深度学习网络直接回归关键点坐标或生成突出显示可能的关节位置的热图的研究。可解释性方法:这个领域专注于理解姿态估计模型如何做出决策。梯度基于归因方法的技术可视化输入中影响模型预测的区域,提供其推理过程的见解。表示学习:这个研究领域围绕
- Mediapipe框架介绍及使用说明
图灵追慕者
mediapipe姿态估计音视频识别Google谷歌
介绍Mediapipe是Google开发的一款开源的跨平台框架,用于构建实时多媒体应用程序。它提供了一系列预训练的机器学习模型和工具,可以用于各种计算机视觉、音频处理和姿态估计等任务。特点Mediapipe库的主要特点包括:1.实时性能:提供高效的实时处理能力,适用于实时应用程序和流媒体处理。2.跨平台支持:支持在多个平台上运行,包括Android、iOS、Windows和Linux等。3.灵活性
- DLL:一个用于空中机器人的基于地图的定位框架
缄默0603
无人机定位机器人无人机定位Lidar点云
在没有全球定位系统(GPS)或外部定位设备(如激光反射器)的情况下,为了使无人驾驶飞行器(uav)能够有效运作,研究人员必须开发自动估计机器人姿态的技术。如果无人机运行的环境不经常变化,并且能够构建该环境的3D地图,基于地图的机器人定位技术可以相当有效。理想情况下,基于地图的姿态估计方法应该是高效、鲁棒和可靠的,因为它们应该迅速地向机器人发送它需要的信息,以计划其未来的行动和运动。3D光探测和测距
- Enum 枚举
120153216
enum枚举
原文地址:http://www.cnblogs.com/Kavlez/p/4268601.html Enumeration
于Java 1.5增加的enum type...enum type是由一组固定的常量组成的类型,比如四个季节、扑克花色。在出现enum type之前,通常用一组int常量表示枚举类型。比如这样:
public static final int APPLE_FUJI = 0
- Java8简明教程
bijian1013
javajdk1.8
Java 8已于2014年3月18日正式发布了,新版本带来了诸多改进,包括Lambda表达式、Streams、日期时间API等等。本文就带你领略Java 8的全新特性。
一.允许在接口中有默认方法实现
Java 8 允许我们使用default关键字,为接口声明添
- Oracle表维护 快速备份删除数据
cuisuqiang
oracle索引快速备份删除
我知道oracle表分区,不过那是数据库设计阶段的事情,目前是远水解不了近渴。
当前的数据库表,要求保留一个月数据,且表存在大量录入更新,不存在程序删除。
为了解决频繁查询和更新的瓶颈,我在oracle内根据需要创建了索引。但是随着数据量的增加,一个半月数据就要超千万,此时就算有索引,对高并发的查询和更新来说,让然有所拖累。
为了解决这个问题,我一般一个月会进行一次数据库维护,主要工作就是备
- java多态内存分析
麦田的设计者
java内存分析多态原理接口和抽象类
“ 时针如果可以回头,熟悉那张脸,重温嬉戏这乐园,墙壁的松脱涂鸦已经褪色才明白存在的价值归于记忆。街角小店尚存在吗?这大时代会不会牵挂,过去现在花开怎么会等待。
但有种意外不管痛不痛都有伤害,光阴远远离开,那笑声徘徊与脑海。但这一秒可笑不再可爱,当天心
- Xshell实现Windows上传文件到Linux主机
被触发
windows
经常有这样的需求,我们在Windows下载的软件包,如何上传到远程Linux主机上?还有如何从Linux主机下载软件包到Windows下;之前我的做法现在看来好笨好繁琐,不过也达到了目的,笨人有本方法嘛;
我是怎么操作的:
1、打开一台本地Linux虚拟机,使用mount 挂载Windows的共享文件夹到Linux上,然后拷贝数据到Linux虚拟机里面;(经常第一步都不顺利,无法挂载Windo
- 类的加载ClassLoader
肆无忌惮_
ClassLoader
类加载器ClassLoader是用来将java的类加载到虚拟机中,类加载器负责读取class字节文件到内存中,并将它转为Class的对象(类对象),通过此实例的 newInstance()方法就可以创建出该类的一个对象。
其中重要的方法为findClass(String name)。
如何写一个自己的类加载器呢?
首先写一个便于测试的类Student
- html5写的玫瑰花
知了ing
html5
<html>
<head>
<title>I Love You!</title>
<meta charset="utf-8" />
</head>
<body>
<canvas id="c"></canvas>
- google的ConcurrentLinkedHashmap源代码解析
矮蛋蛋
LRU
原文地址:
http://janeky.iteye.com/blog/1534352
简述
ConcurrentLinkedHashMap 是google团队提供的一个容器。它有什么用呢?其实它本身是对
ConcurrentHashMap的封装,可以用来实现一个基于LRU策略的缓存。详细介绍可以参见
http://code.google.com/p/concurrentlinke
- webservice获取访问服务的ip地址
alleni123
webservice
1. 首先注入javax.xml.ws.WebServiceContext,
@Resource
private WebServiceContext context;
2. 在方法中获取交换请求的对象。
javax.xml.ws.handler.MessageContext mc=context.getMessageContext();
com.sun.net.http
- 菜鸟的java基础提升之道——————>是否值得拥有
百合不是茶
1,c++,java是面向对象编程的语言,将万事万物都看成是对象;java做一件事情关注的是人物,java是c++继承过来的,java没有直接更改地址的权限但是可以通过引用来传值操作地址,java也没有c++中繁琐的操作,java以其优越的可移植型,平台的安全型,高效性赢得了广泛的认同,全世界越来越多的人去学习java,我也是其中的一员
java组成:
- 通过修改Linux服务自动启动指定应用程序
bijian1013
linux
Linux中修改系统服务的命令是chkconfig (check config),命令的详细解释如下: chkconfig
功能说明:检查,设置系统的各种服务。
语 法:chkconfig [ -- add][ -- del][ -- list][系统服务] 或 chkconfig [ -- level <</SPAN>
- spring拦截器的一个简单实例
bijian1013
javaspring拦截器Interceptor
Purview接口
package aop;
public interface Purview {
void checkLogin();
}
Purview接口的实现类PurviesImpl.java
package aop;
public class PurviewImpl implements Purview {
public void check
- [Velocity二]自定义Velocity指令
bit1129
velocity
什么是Velocity指令
在Velocity中,#set,#if, #foreach, #elseif, #parse等,以#开头的称之为指令,Velocity内置的这些指令可以用来做赋值,条件判断,循环控制等脚本语言必备的逻辑控制等语句,Velocity的指令是可扩展的,即用户可以根据实际的需要自定义Velocity指令
自定义指令(Directive)的一般步骤
&nbs
- 【Hive十】Programming Hive学习笔记
bit1129
programming
第二章 Getting Started
1.Hive最大的局限性是什么?一是不支持行级别的增删改(insert, delete, update)二是查询性能非常差(基于Hadoop MapReduce),不适合延迟小的交互式任务三是不支持事务2. Hive MetaStore是干什么的?Hive persists table schemas and other system metadata.
- nginx有选择性进行限制
ronin47
nginx 动静 限制
http {
limit_conn_zone $binary_remote_addr zone=addr:10m;
limit_req_zone $binary_remote_addr zone=one:10m rate=5r/s;...
server {...
location ~.*\.(gif|png|css|js|icon)$ {
- java-4.-在二元树中找出和为某一值的所有路径 .
bylijinnan
java
/*
* 0.use a TwoWayLinkedList to store the path.when the node can't be path,you should/can delete it.
* 1.curSum==exceptedSum:if the lastNode is TreeNode,printPath();delete the node otherwise
- Netty学习笔记
bylijinnan
javanetty
本文是阅读以下两篇文章时:
http://seeallhearall.blogspot.com/2012/05/netty-tutorial-part-1-introduction-to.html
http://seeallhearall.blogspot.com/2012/06/netty-tutorial-part-15-on-channel.html
我的一些笔记
===
- js获取项目路径
cngolon
js
//js获取项目根路径,如: http://localhost:8083/uimcardprj
function getRootPath(){
//获取当前网址,如: http://localhost:8083/uimcardprj/share/meun.jsp
var curWwwPath=window.document.locati
- oracle 的性能优化
cuishikuan
oracleSQL Server
在网上搜索了一些Oracle性能优化的文章,为了更加深层次的巩固[边写边记],也为了可以随时查看,所以发表这篇文章。
1.ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前,那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾。(这点本人曾经做过实例验证过,的确如此哦!
- Shell变量和数组使用详解
daizj
linuxshell变量数组
Shell 变量
定义变量时,变量名不加美元符号($,PHP语言中变量需要),如:
your_name="w3cschool.cc"
注意,变量名和等号之间不能有空格,这可能和你熟悉的所有编程语言都不一样。同时,变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)。
中间不能有空格,可以使用下划线(_)。
不能使用标点符号。
不能使用ba
- 编程中的一些概念,KISS、DRY、MVC、OOP、REST
dcj3sjt126com
REST
KISS、DRY、MVC、OOP、REST (1)KISS是指Keep It Simple,Stupid(摘自wikipedia),指设计时要坚持简约原则,避免不必要的复杂化。 (2)DRY是指Don't Repeat Yourself(摘自wikipedia),特指在程序设计以及计算中避免重复代码,因为这样会降低灵活性、简洁性,并且可能导致代码之间的矛盾。 (3)OOP 即Object-Orie
- [Android]设置Activity为全屏显示的两种方法
dcj3sjt126com
Activity
1. 方法1:AndroidManifest.xml 里,Activity的 android:theme 指定为" @android:style/Theme.NoTitleBar.Fullscreen" 示例: <application
- solrcloud 部署方式比较
eksliang
solrCloud
solrcloud 的部署其实有两种方式可选,那么我们在实践开发中应该怎样选择呢? 第一种:当启动solr服务器时,内嵌的启动一个Zookeeper服务器,然后将这些内嵌的Zookeeper服务器组成一个集群。 第二种:将Zookeeper服务器独立的配置一个集群,然后将solr交给Zookeeper进行管理
谈谈第一种:每启动一个solr服务器就内嵌的启动一个Zoo
- Java synchronized关键字详解
gqdy365
synchronized
转载自:http://www.cnblogs.com/mengdd/archive/2013/02/16/2913806.html
多线程的同步机制对资源进行加锁,使得在同一个时间,只有一个线程可以进行操作,同步用以解决多个线程同时访问时可能出现的问题。
同步机制可以使用synchronized关键字实现。
当synchronized关键字修饰一个方法的时候,该方法叫做同步方法。
当s
- js实现登录时记住用户名
hw1287789687
记住我记住密码cookie记住用户名记住账号
在页面中如何获取cookie值呢?
如果是JSP的话,可以通过servlet的对象request 获取cookie,可以
参考:http://hw1287789687.iteye.com/blog/2050040
如果要求登录页面是html呢?html页面中如何获取cookie呢?
直接上代码了
页面:loginInput.html
代码:
<!DOCTYPE html PUB
- 开发者必备的 Chrome 扩展
justjavac
chrome
Firebug:不用多介绍了吧https://chrome.google.com/webstore/detail/bmagokdooijbeehmkpknfglimnifench
ChromeSnifferPlus:Chrome 探测器,可以探测正在使用的开源软件或者 js 类库https://chrome.google.com/webstore/detail/chrome-sniffer-pl
- 算法机试题
李亚飞
java算法机试题
在面试机试时,遇到一个算法题,当时没能写出来,最后是同学帮忙解决的。
这道题大致意思是:输入一个数,比如4,。这时会输出:
&n
- 正确配置Linux系统ulimit值
字符串
ulimit
在Linux下面部 署应用的时候,有时候会遇上Socket/File: Can’t open so many files的问题;这个值也会影响服务器的最大并发数,其实Linux是有文件句柄限制的,而且Linux默认不是很高,一般都是1024,生产服务器用 其实很容易就达到这个数量。下面说的是,如何通过正解配置来改正这个系统默认值。因为这个问题是我配置Nginx+php5时遇到了,所以我将这篇归纳进
- hibernate调用返回游标的存储过程
Supanccy2013
javaDAOoracleHibernatejdbc
注:原创作品,转载请注明出处。
上篇博文介绍的是hibernate调用返回单值的存储过程,本片博文说的是hibernate调用返回游标的存储过程。
此此扁博文的存储过程的功能相当于是jdbc调用select 的作用。
1,创建oracle中的包,并在该包中创建的游标类型。
---创建oracle的程
- Spring 4.2新特性-更简单的Application Event
wiselyman
application
1.1 Application Event
Spring 4.1的写法请参考10点睛Spring4.1-Application Event
请对比10点睛Spring4.1-Application Event
使用一个@EventListener取代了实现ApplicationListener接口,使耦合度降低;
1.2 示例
包依赖
<p