- 机器学习学习笔记(吴恩达)(第三课第一周)(无监督算法,K-means、异常检测)
kgbkqLjm
吴恩达机器学习2022机器学习算法学习
欢迎聚类算法:无监督学习:聚类、异常检测推荐算法:强化学习:聚类(Clustering)聚类算法:查看大量数据点并自动找到彼此相关或相似的数据点。是一种无监督学习算法聚类与二院监督学习算法对比:无监督:(聚类是无监督学习算法之一)聚类算法应用:如相似的新闻文章组合,市场细分,DNA数据分析,天文数据分析(星系、天体结构)K-means算法是一种常用的聚类算法原理概述【K-means工作原理过程】(
- 机器学习学习笔记(八)多项式回归与模型泛化
下雨天的小白鞋
对非线性的数据进行处理,相应的预测----添加新的特征:原有的特征进行多项式组合scikit-learn中的多项式回归PolynomialFeatures构建特征导包:fromsklearn.preprocessingimportPolynomialFeatures实例:poly=PolynomialFeatures(degree=2)##最多二次幂特征poly.fit(X)X2=poly.tra
- 机器学习学习笔记——数学篇
小胡爱喝水
机器学习
数学中常见的argmin,argmax表示的是什么意思arg是英文单词argument(自变量)的缩写,所以从字面意义上也就可以看出其代表的意思就是求对应自变量的最大最小值。例如:(w∗,b∗w^*,b^*w∗,b∗)=argmin∑1m\sum_1^m∑1m(f(xi)−yif(x_i)-y_if(xi)−yi)求均方误差最小化时的w∗,b∗w^*,b^*w∗,b∗。argmax类似。
- 机器学习学习笔记(3)——量纲与无量纲,标准化、归一化、正则化
野指针小李
数学机器学习机器学习标准化归一化正则化量纲
量纲、无量纲,标准化、归一化、正则化是我百度了很多次都不进脑子的知识,所以我决定还是放在博客上面。不过鉴于我查阅了很多资料,说是有许多的坑,所以我也不清楚我的理解和解释是否是坑,具体的就留给各位来帮忙评判了!目录1量纲与无量纲1.1量纲1.2无量纲2标准化3归一化4正则化5总结6参考1量纲与无量纲1.1量纲量纲我觉得最重要的一句话是:物理量的大小与单位有关。从这句话我们来思考下最核心的两个单词:大
- 机器学习学习笔记 1 Bagging模型
锋锋的快乐小窝
机器学习学习笔记机器学习笔记决策树
Bagging模型Bagging全称(bootstrapaggregation)并行训练一堆分类器的集成方法。每个基模型可以分别、独立、互不影响地生成最典型的代表就是随机森林随机:数据采样随机,特征选择随机森林:很多决策树并行放在一起由于二重随机性,使得每个树基本上都不会一样,最终的结果也会不一样之所以随机选择,是要保证泛化能力,如果树都一样,那就失去参考价值随机森林(RF)的优势:它能够处理很高
- 李宏毅机器学习学习笔记——自注意力机制
jolando
学习笔记机器学习深度学习
self-attention应用场景为什么要使用Self-attention?Self-attention计算过程PositionalEncodingSelf-attention的变体Multi-headSelf-attentionTruncatedSelf-attentionSelf-attention与其他神经网络的比较Self-attentionv.s.CNNSelf-attentionv.
- 机器学习学习笔记——第一章:绪论
福旺旺
机器学习机器学习
机器学习机器学习学习笔记——第一章:绪论文章目录机器学习机器学习学习笔记——第一章:绪论机器学习即为构建一个机器调参的映射函数。要进行机器学习,先要有数据。一、基础术语1.1、数据准备阶段1.2、学得模型阶段1.3、测试模型阶段1.4、典型的机器学习过程1.5、总结二、假设空间三、归纳偏好四、机器学习理论五、机器学习的现实应用机器学习即为构建一个机器调参的映射函数。要进行机器学习,先要有数据。一、
- 机器学习学习笔记——第二章:模型评估与选择
福旺旺
机器学习机器学习人工智能
机器学习机器学习学习笔记——第二章:模型评估与选择文章目录机器学习一、经验误差与过拟合1.1、经验误差与泛化误差1.2、过拟合与欠拟合二、三个问题三、评估方法3.1、留出法(hold-out)3.2、k折-交叉验证法(k-foldcrossvalidation)3.3、自助法(bootstrap)3.4、调参与最终模型四、性能度量4.1、错误率与精度4.2、查准率、查全率与F14.3、ROC与AU
- Python机器学习实践(一)多项式拟合(简单房价预测)
AiTingDeTong
Python机器学习python机器学习人工智能数据分析
Python机器学习学习笔记与实践环境:win10+Anaconda3.8例子一源自《Python与机器学习实战》—何宇健任务:现有47个房子的面积和价格,需要建立一个模型对房价进行预测。1、获取和处理数据房子的面积与价格对应的数据点击下面获得:点击此处获取导入库,并读取文本文件的数据:importnumpyasnpimportmatplotlib.pyplotasplt#读取房子面积和对应的价格
- 【机器学习学习笔记】机器学习入门&监督学习
MikeBennington
机器学习学习笔记机器学习学习人工智能
1.机器学习入门1.1WhatisMachineLearning?"Fieldofstudythatgivescomputerstheabilitytolearnwithoutbeingexplicitlyprogrammed."——ArthurSamuel(1959)亚瑟·萨缪尔:跳棋程序编写者常用机器学习算法:Supervisedlearning(moreimportant)Unsupervi
- 【李宏毅机器学习】Gradient Descent_1 梯度下降(p5、p6、p7 )学习笔记
duanyuchen
MachineLearning机器学习李宏毅学习笔记
李宏毅机器学习学习笔记汇总课程链接文章目录ReviewGradientDescentTipsTip1:Tuningyourlearningrate小心微调你的学习率Tip2StochasticGradientDescentSGD随机梯度下降Tip3FeatureScaling特征缩放GradientDescentReview在第三步,找一个最好的function,解一个optimization最优
- python机器学习学习笔记(六)
weixin_46753186
python机器学习python数据分析支持向量机机器学习
支持向量机分类实例:用SVM分类器对Iris数据集分析并绘制分类图1.线性importnumpyasnpimportmatplotlib.pyplotaspltfromsklearnimportsvm,datasetsiris=datasets.load_iris()x=iris.data[:,:2]#iris数据萼片的长和宽y=iris.targetsvc=svm.SVC(kernel='lin
- 机器学习学习笔记(二)环境搭建
下雨天的小白鞋
语言基础:Python3IDE:Pycharm集成环境:anacoda一.Anacoda下载地址:https://www.anaconda.com/download/下载页面下载-安装安装成功后打开AnacondaNavigator选择jupyterlaunch等会会出现二.Pycharm下载地址:https://www.jetbrains.com/pycharm/download/#sectio
- 机器学习学习笔记(一)基础
下雨天的小白鞋
一.开发环境框架:scikit-learn工具:pycharm,ANACONDA二.开发基础2.1概念数据集下载:scikit-learn内置数据集或者直接下载的数据集:数据整体样本:每一行数据特征:除最后一列,每一列表达样本的一个特征标记:最后一列特征值、特征向量、特征空间2.2基本任务:分类任务、回归任务2.2.1分类任务二分类任务:例如:判断邮件是否为垃圾邮件多分类任务:图像识别,数字识别多
- 机器学习学习笔记2(Ng课程cs229)
-慢慢-
AI机器学习学习笔记cs229高斯混合模型朴素贝叶斯
牛顿方法简单的来说就是通过求当前点的导数得到下一个点.用到的性质是导数值等于该点切线和横轴夹角的正切值.极大似然估计收敛速度:quadraticconversions二次收敛θ为矩阵时每次迭代都需要重新计算H->nxn特征较多时计算量比较大极大似然估计可以推导:高斯分布=>最小二乘法伯努利分布=>logistic回归指数分布族exponentialfamilydistributionp(y;η)=
- python机器学习学习笔记——学习资源汇总
那么CHEN
pythonpython机器学习人工智能编程语言大数据
参考资料Python集成开发环境(IDE)[1]IDLE:Python解释器默认工具[2]VisualStudioCode:https://code.visualstudio.com/[3]PyCharm:https://www.jetbrains.com/pycharm/[4]Anaconda:https://www.continuum.io/参考教程[1]《Python语言程序设计基础(第2版
- 机器学习学习笔记之——模型评估与改进之交叉验证和网格搜索
前丨尘忆·梦
tensorflow深度学习机器学习
交叉验证与网格搜索前面讨论了监督学习和无监督学习的基本原理,并探索了多种机器学习算法,本章我们深入学习模型评估与参数选择。我们将重点介绍监督方法,包括回归与分类,因为在无监督学习中,模型评估与选择通常是一个非常定性的过程。到目前为止,为了评估我们的监督模型,我们使用train_test_split函数将数据集划分为训练集和测试集,在训练集上调用fit方法来构建模型,并且在测试集上用score方法来
- python机器学习学习笔记(五)
weixin_46753186
python机器学习python机器学习支持向量机数据分析
非线性支持向量机分类1.三次多项式用多项式曲线把决策空间分成两部分kernel='poly',degree为多项式次数importnumpyasnpimportmatplotlib.pyplotaspltfromsklearnimportsvmx=np.array([[1,3],[1,2],[1,1.5],[1.5,2],[2,3],[2.5,1.5],[2,1],[3,1],[3,2],[3.5
- 机器学习学习笔记week1
yangqingao
深度学习机器学习
week11引言1.1机器学习是什么?1.2监督学习1.3无监督学习2单变量线性回归2.1模型表示2.2代价函数2.3代价函数的直观理解I2.4代价函数的直观理解II2.5梯度下降2.6梯度下降的直观理解2.7梯度下降的线性回归3线性代数回顾3.1矩阵和向量3.2加法和标量乘法3.3矩阵向量乘法3.4矩阵乘法3.5矩阵乘法的性质3.6逆、转置1引言1.1机器学习是什么?ArthurSamuel:在
- 机器学习 学习笔记(持续更新)
Include everything
学习算法
机器学习学习笔记一、导论1.1什么是机器学习? 机器学习是在没有明确设置的情况下使计算机具有学习能力的研究领域。(ArthurSamuel-1959) 计算机程序从经验E(计算机自己与自己下成千上百万次棋)中学习,解决某一任务T(下跳棋),进行某一性能度量P(与新对手玩跳棋时赢的概率),通过P测定在T上的表现因经验E而提高的程度。(TomMitchell-1998) 机器学习算法最主要分为监
- 机器学习学习笔记(1)
后季暖
字典特征提取第一列表示北京第二列表示上海第三列表示深圳第四列表示温度前面三列是的话用1不是的话用0什么时候用稀疏矩阵:比如上面这种情况当你的城市很多的情况下那这样就会出现大量的0而系数矩阵只存储不是0的位置可以节省大量空间为什么采用这种表示方法呢?首先我们来看假如要分类:人是1企鹅是2章鱼是3那么这样数字表示的就存在优先级不如按这种办法来pclass是一等舱二等舱三等舱这种字典特征抽取的应用场景:
- 机器学习学习笔记——batchsize越大越好?
phily123
机器学习学习笔记深度学习神经网络机器学习
batchsize不是越大越好使用mini-batch好处:提高了运行效率,相比batch-GD的每个epoch只更新一次参数,使用mini-batch可以在一个epoch中多次更新参数,加速收敛。解决了某些任务中,训练集过大,无法一次性读入内存的问题。虽然第一点是mini-batch提出的最初始的原因,但是后来人们发现,使用mini-batch还有个好处,即每次更新时由于没有使用全量数据而仅仅使
- 机器学习学习笔记(一)
图南zzz
python机器学习人工智能算法
目录机器学习笔记(一)一、模型评估二、监督学习三、无监督学习四、单变量线性回归(LinearRegressionwithOneVariable)3.1代价函数(平方误差函数)(损失函数)3.2梯度下降3.3梯度下降的线性回归五、多变量线性回归(LinearRegressionwithMultipleVariables)4.1多维特征4.2多变量梯度下降4.3梯度下降之特征缩放六、正规方程六、逻辑回
- 机器学习学习笔记之——监督学习之线性模型
前丨尘忆·梦
tensorflow深度学习机器学习
线性模型线性模型利用输入特征的线性函数(linearfunction)进行预测。1、用于回归的线性模型对于回归问题,线性模型预测的一般公式如下:y^=w[0]∗x[0]+w[1]∗x[1]+...+w[p]∗x[p]+b\hat{y}=w[0]*x[0]+w[1]*x[1]+...+w[p]*x[p]+by^=w[0]∗x[0]+w[1]∗x[1]+...+w[p]∗x[p]+b这里x[0]到x[
- 机器学习学习笔记(一)——多元线性回归(Multivariate Linear Regression)
lancetop-stardrms
机器学习机器学习
多元线性回归(multivariatelinearregression):在线性回归问题(Linearregression)中,引入多个特征变量(MultipleFeatures)作为输入,也被称为“多元线性回归(MultivariateLinearRegression)”.符号定义:假设函数(hypothesisfunction):Themultivariableformofthehypothe
- 吴恩达机器学习学习笔记——Week 2——多元线性回归(Multivariate Linear Regression)
预见未来to50
机器学习深度学习(MLDeepLearning)
一、课件及课堂练习1.多个特征值(多变量)课堂练习:2.多元梯度下降课堂练习:3.梯度下降实践1——特征值缩放(均值归一化)课堂练习:4.梯度下降实践2——学习率课堂练习:5.特征数量及多项式回归课堂练习:6.标准方程课堂练习:7.标准方程法可能遇到不可逆问题二、内容概要1.多个特征值2.多元梯度下降3.梯度下降实践1——特征值缩放4.梯度下降实践2——学习率5.特征数量及多项式回归6.标准方程7
- 机器学习学习笔记之:loss function损失函数及activation function激活函数
csdshelton
之所以把损失函数和激活函数放在一起做个总结,是因为本身这两都带函数,都是机器学习中的内容,很容易混在一起,第二点,这两者总是一起出现,根据任务的不同,可能出现不同的排列组合。因此想一起整理一下。不同的机器学习方法的损失函数DifferentLossfunctionsfordifferentmachinelearningMethods不同的机器学习方法,损失函数不一样,quadraticloss(平
- Python机器学习学习笔记之——引言
前丨尘忆·梦
tensorflow深度学习机器学习
引言mglearn库的下载地址:链接:https://pan.baidu.com/s/1FkRGBFgtjqsZTikLEJbtzg提取码:4db0机器学习是从数据中提取知识。它是统计学、人工智能和计算机科学交叉的研究领域,也被称为预测分析或统计学习。1、为何选择机器学习在“智能”应用早期,许多系统使用人为制定的“if”和“else”决策规则来处理数据,或根据用户输入的内容进行调整。但人为制定决策
- 《机器学习》周志华(西瓜书)学习笔记 第八章 集成学习
Sundm@lhq
机器学习西瓜书学习笔记机器学习学习笔记集成学习周志华
机器学习学习笔记4总目录第八章集成学习8.1个体与集成集成学习(ensemblelearning)通过构建并结合多个学习器来完成学习任务,有时也被称为多分类器系统(multi-classifiersystem)、基于委员会的学习(committee-basedlearning)等.集成学习的一般结构:先产生一组"个体学习器"(individuallearner),再用某种策略将它们结合起来。同质集
- 【李宏毅机器学习】Recurrent Neural Network Part1 循环神经网络(p20) 学习笔记
duanyuchen
MachineLearning机器学习李宏毅学习笔记
李宏毅机器学习学习笔记汇总课程链接文章目录ExampleApplicationSlotFilling把词用向量来表示的方法1-of-Nencoding/one-hotBeyond1-of-Nencoding存在的问题RecurrentNeuralNetwork(RNN)ExampleRNN处理slotsfilling问题Ofcourseitcanbedeep...RNN的变形ElmanNetwor
- eclipse maven
IXHONG
eclipse
eclipse中使用maven插件的时候,运行run as maven build的时候报错
-Dmaven.multiModuleProjectDirectory system propery is not set. Check $M2_HOME environment variable and mvn script match.
可以设一个环境变量M2_HOME指
- timer cancel方法的一个小实例
alleni123
多线程timer
package com.lj.timer;
import java.util.Date;
import java.util.Timer;
import java.util.TimerTask;
public class MyTimer extends TimerTask
{
private int a;
private Timer timer;
pub
- MySQL数据库在Linux下的安装
ducklsl
mysql
1.建好一个专门放置MySQL的目录
/mysql/db数据库目录
/mysql/data数据库数据文件目录
2.配置用户,添加专门的MySQL管理用户
>groupadd mysql ----添加用户组
>useradd -g mysql mysql ----在mysql用户组中添加一个mysql用户
3.配置,生成并安装MySQL
>cmake -D
- spring------>>cvc-elt.1: Cannot find the declaration of element
Array_06
springbean
将--------
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3
- maven发布第三方jar的一些问题
cugfy
maven
maven中发布 第三方jar到nexus仓库使用的是 deploy:deploy-file命令
有许多参数,具体可查看
http://maven.apache.org/plugins/maven-deploy-plugin/deploy-file-mojo.html
以下是一个例子:
mvn deploy:deploy-file -DgroupId=xpp3
- MYSQL下载及安装
357029540
mysql
好久没有去安装过MYSQL,今天自己在安装完MYSQL过后用navicat for mysql去厕测试链接的时候出现了10061的问题,因为的的MYSQL是最新版本为5.6.24,所以下载的文件夹里没有my.ini文件,所以在网上找了很多方法还是没有找到怎么解决问题,最后看到了一篇百度经验里有这个的介绍,按照其步骤也完成了安装,在这里给大家分享下这个链接的地址
- ios TableView cell的布局
张亚雄
tableview
cell.imageView.image = [UIImage imageNamed:[imageArray objectAtIndex:[indexPath row]]];
CGSize itemSize = CGSizeMake(60, 50);
&nbs
- Java编码转义
adminjun
java编码转义
import java.io.UnsupportedEncodingException;
/**
* 转换字符串的编码
*/
public class ChangeCharset {
/** 7位ASCII字符,也叫作ISO646-US、Unicode字符集的基本拉丁块 */
public static final Strin
- Tomcat 配置和spring
aijuans
spring
简介
Tomcat启动时,先找系统变量CATALINA_BASE,如果没有,则找CATALINA_HOME。然后找这个变量所指的目录下的conf文件夹,从中读取配置文件。最重要的配置文件:server.xml 。要配置tomcat,基本上了解server.xml,context.xml和web.xml。
Server.xml -- tomcat主
- Java打印当前目录下的所有子目录和文件
ayaoxinchao
递归File
其实这个没啥技术含量,大湿们不要操笑哦,只是做一个简单的记录,简单用了一下递归算法。
import java.io.File;
/**
* @author Perlin
* @date 2014-6-30
*/
public class PrintDirectory {
public static void printDirectory(File f
- linux安装mysql出现libs报冲突解决
BigBird2012
linux
linux安装mysql出现libs报冲突解决
安装mysql出现
file /usr/share/mysql/ukrainian/errmsg.sys from install of MySQL-server-5.5.33-1.linux2.6.i386 conflicts with file from package mysql-libs-5.1.61-4.el6.i686
- jedis连接池使用实例
bijian1013
redisjedis连接池jedis
实例代码:
package com.bijian.study;
import java.util.ArrayList;
import java.util.List;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoo
- 关于朋友
bingyingao
朋友兴趣爱好维持
成为朋友的必要条件:
志相同,道不合,可以成为朋友。譬如马云、周星驰一个是商人,一个是影星,可谓道不同,但都很有梦想,都要在各自领域里做到最好,当他们遇到一起,互相欣赏,可以畅谈两个小时。
志不同,道相合,也可以成为朋友。譬如有时候看到两个一个成绩很好每次考试争做第一,一个成绩很差的同学是好朋友。他们志向不相同,但他
- 【Spark七十九】Spark RDD API一
bit1129
spark
aggregate
package spark.examples.rddapi
import org.apache.spark.{SparkConf, SparkContext}
//测试RDD的aggregate方法
object AggregateTest {
def main(args: Array[String]) {
val conf = new Spar
- ktap 0.1 released
bookjovi
kerneltracing
Dear,
I'm pleased to announce that ktap release v0.1, this is the first official
release of ktap project, it is expected that this release is not fully
functional or very stable and we welcome bu
- 能保存Properties文件注释的Properties工具类
BrokenDreams
properties
今天遇到一个小需求:由于java.util.Properties读取属性文件时会忽略注释,当写回去的时候,注释都没了。恰好一个项目中的配置文件会在部署后被某个Java程序修改一下,但修改了之后注释全没了,可能会给以后的参数调整带来困难。所以要解决这个问题。
&nb
- 读《研磨设计模式》-代码笔记-外观模式-Facade
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 百度百科的定义:
* Facade(外观)模式为子系统中的各类(或结构与方法)提供一个简明一致的界面,
* 隐藏子系统的复杂性,使子系统更加容易使用。他是为子系统中的一组接口所提供的一个一致的界面
*
* 可简单地
- After Effects教程收集
cherishLC
After Effects
1、中文入门
http://study.163.com/course/courseMain.htm?courseId=730009
2、videocopilot英文入门教程(中文字幕)
http://www.youku.com/playlist_show/id_17893193.html
英文原址:
http://www.videocopilot.net/basic/
素
- Linux Apache 安装过程
crabdave
apache
Linux Apache 安装过程
下载新版本:
apr-1.4.2.tar.gz(下载网站:http://apr.apache.org/download.cgi)
apr-util-1.3.9.tar.gz(下载网站:http://apr.apache.org/download.cgi)
httpd-2.2.15.tar.gz(下载网站:http://httpd.apac
- Shell学习 之 变量赋值和引用
daizj
shell变量引用赋值
本文转自:http://www.cnblogs.com/papam/articles/1548679.html
Shell编程中,使用变量无需事先声明,同时变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)
中间不能有空格,可以使用下划线(_)
不能使用标点符号
不能使用bash里的关键字(可用help命令查看保留关键字)
需要给变量赋值时,可以这么写:
- Java SE 第一讲(Java SE入门、JDK的下载与安装、第一个Java程序、Java程序的编译与执行)
dcj3sjt126com
javajdk
Java SE 第一讲:
Java SE:Java Standard Edition
Java ME: Java Mobile Edition
Java EE:Java Enterprise Edition
Java是由Sun公司推出的(今年初被Oracle公司收购)。
收购价格:74亿美金
J2SE、J2ME、J2EE
JDK:Java Development
- YII给用户登录加上验证码
dcj3sjt126com
yii
1、在SiteController中添加如下代码:
/**
* Declares class-based actions.
*/
public function actions() {
return array(
// captcha action renders the CAPTCHA image displ
- Lucene使用说明
dyy_gusi
Lucenesearch分词器
Lucene使用说明
1、lucene简介
1.1、什么是lucene
Lucene是一个全文搜索框架,而不是应用产品。因此它并不像baidu或者googleDesktop那种拿来就能用,它只是提供了一种工具让你能实现这些产品和功能。
1.2、lucene能做什么
要回答这个问题,先要了解lucene的本质。实际
- 学习编程并不难,做到以下几点即可!
gcq511120594
数据结构编程算法
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- Java面试十问之三:Java与C++内存回收机制的差别
HNUlanwei
javaC++finalize()堆栈内存回收
大家知道, Java 除了那 8 种基本类型以外,其他都是对象类型(又称为引用类型)的数据。 JVM 会把程序创建的对象存放在堆空间中,那什么又是堆空间呢?其实,堆( Heap)是一个运行时的数据存储区,从它可以分配大小各异的空间。一般,运行时的数据存储区有堆( Heap)和堆栈( Stack),所以要先看它们里面可以分配哪些类型的对象实体,然后才知道如何均衡使用这两种存储区。一般来说,栈中存放的
- 第二章 Nginx+Lua开发入门
jinnianshilongnian
nginxlua
Nginx入门
本文目的是学习Nginx+Lua开发,对于Nginx基本知识可以参考如下文章:
nginx启动、关闭、重启
http://www.cnblogs.com/derekchen/archive/2011/02/17/1957209.html
agentzh 的 Nginx 教程
http://openresty.org/download/agentzh-nginx-tutor
- MongoDB windows安装 基本命令
liyonghui160com
windows安装
安装目录:
D:\MongoDB\
新建目录
D:\MongoDB\data\db
4.启动进城:
cd D:\MongoDB\bin
mongod -dbpath D:\MongoDB\data\db
&n
- Linux下通过源码编译安装程序
pda158
linux
一、程序的组成部分 Linux下程序大都是由以下几部分组成: 二进制文件:也就是可以运行的程序文件 库文件:就是通常我们见到的lib目录下的文件 配置文件:这个不必多说,都知道 帮助文档:通常是我们在linux下用man命令查看的命令的文档
二、linux下程序的存放目录 linux程序的存放目录大致有三个地方: /etc, /b
- WEB开发编程的职业生涯4个阶段
shw3588
编程Web工作生活
觉得自己什么都会
2007年从学校毕业,凭借自己原创的ASP毕业设计,以为自己很厉害似的,信心满满去东莞找工作,找面试成功率确实很高,只是工资不高,但依旧无法磨灭那过分的自信,那时候什么考勤系统、什么OA系统、什么ERP,什么都觉得有信心,这样的生涯大概持续了约一年。
根本不是自己想的那样
2008年开始接触很多工作相关的东西,发现太多东西自己根本不会,都需要去学,不管是asp还是js,
- 遭遇jsonp同域下变作post请求的坑
vb2005xu
jsonp同域post
今天迁移一个站点时遇到一个坑爹问题,同一个jsonp接口在跨域时都能调用成功,但是在同域下调用虽然成功,但是数据却有问题. 此处贴出我的后端代码片段
$mi_id = htmlspecialchars(trim($_GET['mi_id ']));
$mi_cv = htmlspecialchars(trim($_GET['mi_cv ']));
贴出我前端代码片段:
$.aj