电路Circuit->Chapter6 Capacitors and Inductors

Capacitors and Inductors

  • 6.1 Storage Elements
  • 6.2 Capacitors
  • 6.3 Series and Parallel Capacitors
  • 6.4 Inductors
    • 1.v-i characteristics
    • 2.Power
    • 3.Energy
  • 6.5 Series and Parallel Inductors
  • 6.6 Application

6.1 Storage Elements

In contrast to resistors,which spend or dissipate energy irreversibly,capacitors and inductors do not dissipate but stores or releases energy,which can be retrieved at a later time(i.e.,have a memory).
For this reason,capacitors and inductors are called storge elements.

6.2 Capacitors

A capacitor consists of two conducting plates separated by an insulator(or dielectric).
电路Circuit->Chapter6 Capacitors and Inductors_第1张图片
这几个例子不重要,看不懂也不用查字典
Fixed capacitors:polyester capacitor;ceramic capacitor;electrolytic capacitor
Variable capacitors:trimmer capacitor;filmtrim capacitor

Capacitance is the ratio of the charge on one plate of a capacitor to the voltage difference between the two plates,measured in farads(F)
C = q U C=\frac{q}{U} C=Uq
电路Circuit->Chapter6 Capacitors and Inductors_第2张图片
电路Circuit->Chapter6 Capacitors and Inductors_第3张图片
Circuit model of a nonideal capacitor(实际电容模型)
电路Circuit->Chapter6 Capacitors and Inductors_第4张图片
Important properties of a capacitor:

  1. A capacitor is an open circuit to dc通直阻交
  2. The voltage on a capacitor must be continuous.The voltage on a capacitor cannot change abruptly. The capacitor resists an abrupt change in the voltage across it.电压不能突变
  3. The ideal capacitor does not dissipate energy.It takes power from the circuit when storing energy in its field and returns previously stored energy when delivering power to the circuit.不消耗能量
  4. A real,nonideal capacitor has a parallel-model leakage resistance.The leakage resistance can be neglected for most practical applications.

6.3 Series and Parallel Capacitors

The series-parallel combination of resistive circuits can be extened to series -parallel connecs of capacitors.
How to replace capacitors in series-parallel connections by a single equivalent capacitor?
v-i characteristics
电路Circuit->Chapter6 Capacitors and Inductors_第5张图片
电路Circuit->Chapter6 Capacitors and Inductors_第6张图片
The equivalent capacitance of parallel-connected capacitors is the sum of the individual capacitances.
C e q = C 1 + C 2 + ⋯ + C N C_{eq}=C_1+C_2+\cdots+C_N Ceq=C1+C2++CN
The equivalent capacitance of series-connected capacitors is the reciprocal of the sum of the reciprocals of the individual capacitances.
1 C e q = 1 C 1 + 1 C 2 + ⋯ + 1 C N \frac{1}{C_{eq}}=\frac{1}{C_1}+\frac{1}{C_2}+\cdots+\frac{1}{C_N} Ceq1=C11+C21++CN1

6.4 Inductors

An Inductor consists of a coil of conducting wire.
A practical inductor is usually formed into a cylindrical coil with many turns of conducting wire.
电路Circuit->Chapter6 Capacitors and Inductors_第7张图片
real inductors:solenoidal wound inductor;toroidal inductor;chip inductor

1.v-i characteristics

u ( t ) = L d i ( t ) d t u(t)=L\frac{di(t)}{dt} u(t)=Ldtdi(t)
Note:

  1. Inductance is the property whereby an inductor exhibits opposition to the change of current flowing through it.
  2. The voltage across an inductor depends on the time rate of change of the current.
  3. When the current is constant,u=0.An inductor acts like a short circuit to dc.
  4. The current through an inductor cannot change instantaneously.
    i ( t ) = 1 L ∫ − ∞ t u d ξ = 1 L ∫ − ∞ t 0 u d ξ + 1 L ∫ t 0 t u d ξ   i ( t ) = i ( t 0 ) + 1 L ∫ t 0 t u d ξ . i(t)=\frac{1}{L}∫_{-∞}^t udξ=\frac{1}{L}∫_{-∞}^{t_0} udξ+\frac{1}{L}∫_{t_0}^t udξ\\ ~\\ i(t)=i(t_0)+\frac{1}{L}∫_{t_0}^t udξ . i(t)=L1tudξ=L1t0udξ+L1t0tudξ i(t)=i(t0)+L1t0tudξ.
    Note:
    i(t) is the total current for -∞ to t.
    i(t0) is the total current for -∞ to t0
    电路Circuit->Chapter6 Capacitors and Inductors_第8张图片

2.Power

u ( t ) = L d i ( t ) d t → p = u i = L d i d t ⋅ i u(t)=L\frac{di(t)}{dt}→p=ui=L\frac{di}{dt}·i u(t)=Ldtdi(t)p=ui=Ldtdii
passive sign convention

  1. If i↑,p>0,takes power
  2. if i↓,p>0,delivers power
    Inductor does not dissipate energy.The energy stored in it can be retrieved at a later time.The inductor takes power from the circuit when storing energy and delivers power to the circuit when returning previously stored energy.

3.Energy

W L = ∫ − ∞ t L i d i d ξ d ξ = 1 2 L i 2 ( ξ ) ∣ − ∞ t = 1 2 L i 2 ( t ) − 1 2 L i 2 ( − ∞ ) W L = 1 2 L i 2 ≥ 0 Δ W L = 1 2 L i 2 ( t ) − 1 2 L i 2 ( t 0 ) W_L=∫_{-∞}^t Li\frac{di}{dξ}dξ= \frac{1}{2}Li^2(ξ)|_{-∞}^t =\frac{1}{2}Li^2(t)-\frac{1}{2}Li^2(-∞)\\ W_L=\frac{1}{2}Li^2≥0\\ ΔW_L=\frac{1}{2}Li^2(t)-\frac{1}{2}Li^2(t_0) WL=tLidξdidξ=21Li2(ξ)t=21Li2(t)21Li2()WL=21Li20ΔWL=21Li2(t)21Li2(t0)
Note:
1.The energy of an inductor depends on the current.
2.WL≥0
电感储存的能量与电流有关
Circuit model of a nonideal inductor
电路Circuit->Chapter6 Capacitors and Inductors_第9张图片

6.5 Series and Parallel Inductors

1.Inductors in series
电路Circuit->Chapter6 Capacitors and Inductors_第10张图片
Equivalent inductor
u 1 = L 1 d i d t u 2 = L 2 d i d t u = u 1 + u 2 = ( L 1 + L 2 ) d i d t = L d i d t \Large u_1=L_1\frac{di}{dt}\\ \Large u_2=L_2\frac{di}{dt}\\ \Large u=u_1+u_2=(L_1+L_2)\frac{di}{dt}=L\frac{di}{dt} u1=L1dtdiu2=L2dtdiu=u1+u2=(L1+L2)dtdi=Ldtdi
L = L 1 + L 2 L=L_1+L_2 L=L1+L2
Voltage division
u 1 = L 1 d i d t = L 1 L u = L 1 L 1 + L 2 u u 2 = L 2 d i d t = L 2 L u = L 2 L 1 + L 2 u \Large u_1=L_1\frac{di}{dt}=\frac{L_1}{L}u=\frac{L_1}{L_1+L_2}u\\ \Large u_2=L_2\frac{di}{dt}=\frac{L_2}{L}u=\frac{L_2}{L_1+L_2}u u1=L1dtdi=LL1u=L1+L2L1uu2=L2dtdi=LL2u=L1+L2L2u
2.Inductors in parallel
L = 1 1 L 1 + 1 L 2 = L 1 L 2 L 1 + L 2 L=\frac{1}{ \frac{1}{L_1}+\frac{1}{L_2}}=\frac{L_1L_2}{L_1+L_2} L=L11+L211=L1+L2L1L2
电路Circuit->Chapter6 Capacitors and Inductors_第11张图片
Equivalent inductor
i 1 = 1 L 1 ∫ − ∞ t u ( ξ ) d ξ i 2 = 1 L 2 ∫ − ∞ t u ( ξ ) d ξ i = i 1 + i 2 = ( 1 L 1 + 1 L 2 ) ∫ − ∞ t u ( ξ ) d ξ = 1 L ∫ − ∞ t u ( ξ ) d ξ i_1=\frac{1}{L_1}∫_{-∞}^tu(ξ)dξ\\ i_2=\frac{1}{L_2}∫_{-∞}^tu(ξ)dξ\\ i=i_1+i_2=(\frac{1}{L_1}+\frac{1}{L_2})∫_{-∞}^tu(ξ)dξ=\frac{1}{L}∫_{-∞}^tu(ξ)dξ i1=L11tu(ξ)dξi2=L21tu(ξ)dξi=i1+i2=(L11+L21)tu(ξ)dξ=L1tu(ξ)dξ
Current division
i 1 = L L 1 i = L 2 i L 1 + L 2 i 2 = L L 2 i = L 1 i L 1 + L 2 \Large i_1=\frac{L}{L_1}i=\frac{L_2i}{L_1+L_2}\\ i_2=\frac{L}{L_2}i=\frac{L_1i}{L_1+L_2} i1=L1Li=L1+L2L2ii2=L2Li=L1+L2L1i
The equivalent inductance of series-connected inductors is the sum of the individual inductances.
L e q = L 1 + L 2 + ⋯ + L N L_{eq}=L_1+L_2+\cdots+L_N Leq=L1+L2++LN
The equivalent inductance of parallel inductors is the reciprocal of the sum of the reciprocal of the individual inductances.
1 L e q = 1 L 1 + 1 L 2 + ⋯ + 1 L N \frac{1}{L_{eq}}=\frac{1}{L_1}+\frac{1}{L_2}+\cdots+\frac{1}{L_N} Leq1=L11+L21++LN1

6.6 Application

Integrator
Differentiator
Analog Computer
电路Circuit->Chapter6 Capacitors and Inductors_第12张图片
电路Circuit->Chapter6 Capacitors and Inductors_第13张图片
电路Circuit->Chapter6 Capacitors and Inductors_第14张图片

你可能感兴趣的:(电路学习笔记)