给定一个起始字符串和一个目标字符串,现在将起始字符串按照特定的变换规则转换为目标字符串,求最少要进行多少次转换。转换规则为每次只能改变字符串中的一个字符,且每次转换后的字符串都要在给定的字符串集合中。
参考:https://shenjie1993.gitbooks.io/leetcode-python/127%20Word%20Ladder.html
题目在2017年1月改动了,所以代码我也改动了。
因为每次变换后的字符串都要在给定的字符串组中,所以每次变化的情况都是有限的。现在把变化过程做成一个树的结构,由某一个字符串变化而来的字符串就成为该字符串的子树。参看下图的例子,我们可以得到以下几点结论:
1.我们把起始字符串当成根节点,如果在变化过程中,某一个节点是目标字符串,那么就找到了一条变化路径。
2.节点所在的高度能够反映出变化到该节点时经历了几次变化,如hot在根节点的下一层,表示变化了一次,hut和bot在更下一层,表示变化了两次。
在树上层出现过的字符串没必要在下层再次出现,因为如果该字符串是转换过程中必须经过的中间字符串,那么应该挑选上层的该字符串继续进行变化,它的转换次数少。
3.如果上一层有多个字符串可以转换为下一层同一个字符串,那么只需要找到其中一个转换关系即可,如例子中的bit和him都可以转为bim,我们只需要知道有一条关系可以走到bim就可以了,没必要找到所有的转换关系,因为这样已经可以确定进行两次转换就能变为bim。
4.基于第3和第4点,当集合中的字符串在树中出现后,就可以把它从集合中删除。这样可以防止字符串不断地循环转化。
5.至此,这个问题就变为一个深度优先遍历问题,只需要依次遍历每一层的节点,如果在该层找到了目标字符串,只要返回相应的变化次数。如果到某一层树的节点无法继续向下延伸,且没有找到目标字符。
不然LTE。最终668ms
class Solution(object):
def ladderLength(self, beginWord, endWord, wordList):
"""
:type beginWord: str
:type endWord: str
:type wordList: List[str]
:rtype: int
"""
wordSet = set(wordList)
cur_level = [beginWord]
next_level = []
depth = 1
n = len(beginWord) # 启示字符串长度
while cur_level:
for item in cur_level:
if item == endWord:
return depth
for i in range(n):
for c in 'abcdefghijklmnopqrstuvwxyz':
word = item[:i] + c + item[i + 1:]
if word in wordSet:
wordSet.remove(word)
next_level.append(word)
# 树的下一层创建完毕
depth += 1
cur_level = next_level
next_level = []
return 0
按理说会更快一些,实际上并没有,但是再将next_level.append(word)变为next_level.append(str(word))后,却有提升至500ms。不甚理解。
PS:后经过试验,发现有时也会更差,看来leetcode时间果然不能信。
class Solution(object):
def ladderLength(self, beginWord, endWord, wordList):
"""
:type beginWord: str
:type endWord: str
:type wordList: List[str]
:rtype: int
"""
wordSet = set(wordList)
cur_level = set([beginWord])
next_level = set()
depth = 1
n = len(beginWord) # 启示字符串长度
while cur_level:
for item in cur_level:
if item == endWord:
return depth
for i in range(n):
for c in 'abcdefghijklmnopqrstuvwxyz':
word = item[:i] + c + item[i + 1:]
if word in wordSet:
print type(word), type(str(word))
wordSet.remove(word)
next_level.add(str(word))
# 树的下一层创建完毕
depth += 1
cur_level = next_level
next_level = set()
return 0
给定一个起始字符串和一个目标字符串,现在将起始字符串按照特定的变换规则转换为目标字符串,求所有转换次数最少的转换过程。转换规则为每次只能改变字符串中的一个字符,且每次转换后的字符串都要在给定的字符串集合中。
为每次变换后的字符串都要在给定的字符串组中,所以每次变化的情况都是有限的。现在把变化过程做成一个树的结构,由某一个字符串变化而来的字符串就成为该字符串的子树。参看下图的例子,我们可以得到以下几点结论:
1.我们把起始字符串当成根节点,如果在变化过程中,某一个节点是目标字符串,那么就找到了一条变化路径。
2.节点所在的高度能够反映出变化到该节点时经历了几次变化,如hot在根节点的下一层,表示变化了一次,hut和bot在更下一层,表示变化了两次。
3.在树上层出现过的字符串没必要在下层再次出现,因为如果该字符串是转换过程中必须经过的中间字符串,那么应该挑选上层的该字符串继续进行变化,它的转换次数少。
4.如果上一层有多个字符串可以转换为下一层同一个字符串,那么只需要找到其中一个转换关系即可,如例子中的bit和him都可以转为bim,我们只需要知道有一条关系可以走到bim就可以了,没必要找到所有的转换关系,因为这样已经可以确定进行两次转换就能变为bim。
5.基于第3和第4点,当集合中的字符串在树中出现后,就可以把它从集合中删除。这样可以防止字符串不断地循环转化。
至此,这个问题就变为一个深度优先遍历问题,只需要依次遍历每一层的节点,如果在该层找到了目标字符串,只要返回相应的变化次数。如果到某一层树的节点无法继续向下延伸,且没有找到目标字符
稍微有改动,应对改题目
class Solution(object):
def findLadders(self, beginWord, endWord, wordList):
"""
:type beginWord: str
:type endWord: str
:type wordList: List[str]
:rtype: List[List[str]]
"""
def bfs(front_level, end_level, is_forward, word_set, path_dic):
if len(front_level) == 0:
return False
if len(front_level) > len(end_level):
return bfs(end_level, front_level, not is_forward, word_set, path_dic)
for word in (front_level | end_level):
word_set.discard(word)
next_level = set()
done = False
while front_level:
word = front_level.pop()
for c in 'abcdefghijklmnopqrstuvwxyz':
for i in range(len(word)):
new_word = word[:i] + c + word[i + 1:]
if new_word in end_level:
done = True
add_path(word, new_word, is_forward, path_dic)
else:
if new_word in word_set:
next_level.add(new_word)
add_path(word, new_word, is_forward, path_dic)
return done or bfs(next_level, end_level, is_forward, word_set, path_dic)
def add_path(word, new_word, is_forward, path_dic):
if is_forward:
path_dic[word] = path_dic.get(word, []) + [new_word]
else:
path_dic[new_word] = path_dic.get(new_word, []) + [word]
def construct_path(word, end_word, path_dic, path, paths):
if word == end_word:
paths.append(path)
return
if word in path_dic:
for item in path_dic[word]:
construct_path(item, end_word, path_dic, path + [item], paths)
front_level, end_level = {beginWord}, {endWord}
path_dic = {}
wordSet = set(wordList)
if endWord not in wordSet:
return []
bfs(front_level, end_level, True, wordSet, path_dic)
path, paths = [beginWord], []
# print path_dic
construct_path(beginWord, endWord, path_dic, path, paths)
return paths
第二题没好好看