- Python 机器学习:NumPy 实现朴素贝叶斯分类器
Python编程之道
Python编程之道python机器学习numpyai
Python机器学习:NumPy实现朴素贝叶斯分类器关键词:朴素贝叶斯分类器、NumPy、机器学习、概率模型、条件概率、拉普拉斯平滑、向量化计算摘要:本文系统讲解朴素贝叶斯分类器的核心原理,基于NumPy实现高效的算法框架,涵盖从概率理论到工程实现的完整流程。通过数学公式推导、代码实现和鸢尾花数据集实战,展示如何利用向量化计算优化概率估计,解决特征独立性假设下的分类问题。同时分析算法优缺点及实际应
- 万向节死锁公式推导
微小冷
机器人欧拉角旋转矩阵万向节万向节死锁旋转轴旋转
文章目录欧拉角的万向节死锁旋转轴欧拉角的万向节死锁如果把刚体的旋转沿着三个旋转轴进行拆分,那么可以变成三个旋转角的叠加,这三个旋转角就是欧拉角,分别对应旋转矩阵,为了书写方便,记Sθ=sinθ,Cθ=cosθS_\theta=\sin\theta,C_\theta=\cos\thetaSθ=sinθ,Cθ=cosθ,则三个旋转矩阵为Rx(θ)R_x(\theta)Rx(θ)Ry(θ)R_y(\
- 牛顿迭代法求解平方根
Young_Gy
一个实例迭代简介牛顿迭代法牛顿迭代法简介简单推导泰勒公式推导延伸与应用一个实例//java实现的sqrt类和方法publicclasssqrt{publicstaticdoublesqrt(doublen){if(nerr*t)t=(n/t+t)/2;returnt;}publicstaticvoidmain(String[]args){sqrta=newsqrt();System.out.pri
- 代码随想录算法训练营第四十六天|动态规划part13
xindafu
算法动态规划
647.回文子串题目链接:647.回文子串-力扣(LeetCode)文章讲解:代码随想录思路:以dp【i】表示以s【i】结尾的回文子串的个数,发现递推公式推导不出来此路·不通以dp【i】【j】表示s【i】到s【j】的回文子串的个数,递推公式也推不出正确dp【i】【j】表示s【i】到s【j】是否为回文串确定递归顺序:dp【i】【j】依赖于dp【i+1】【j-1】因此i从后往前遍历,j从前往后遍历则最
- 机器学习-三大SOTA Boosting算法总结和调优
小新学习屋
机器学习机器学习boosting集成学习决策树人工智能
参考书籍:《机器学习公式推导和代码实现》书籍页码:P197~205简介除了深度学习适用的文本、图像、语音、视频等非结构化数据,对于训练样本较少的结构化数据,Boosting算法仍是第一选择。XGBoost、LightGBM、CatBoost是目前经典的SOTABoosting算法算法对比维度XGBoostLightGBMCatBoos说明算法的继承性是对GBDT的改进是对XGBoost的改进是对X
- [学习] 牛顿迭代法:从数学原理到实战
极客不孤独
学习算法python
牛顿迭代法:从数学原理到实战——高效求解方程根的数值方法文章目录牛顿迭代法:从数学原理到实战一、引言:为什么需要牛顿迭代法?二、数学原理:几何直观与公式推导1.**核心思想**2.**几何解释**3.**收敛性分析**三、应用场景:跨领域实战案例四、Python示例:求解ex+x3=0e^x+x^3=0ex+x3=0的根五、优缺点与改进方向六、结语:牛顿法的哲学启示一、引言:为什么需要牛顿迭代法?
- Goursat问题解的公式推导
weixin_30777913
算法
题目问题7.求Goursat问题的解的公式utt−c2uxx=0,x>c∣t∣;(2.C.11)u_{tt}-c^2u_{xx}=0,\quadx>c|t|;\tag{2.C.11}utt−c2uxx=0,x>c∣t∣;(2.C.11)当t0t>0t>0时,u∣x=ct=h(t)u|_{x=ct}=h(t)u∣x=ct=h(t).\tag{2.C.13}其中g(0)=h(0)g(0)=h(0)g(
- RRT*(Rapidly-exploring Random Trees Star)算法 定义+特性+原理+公式+Python示例代码(带详细注释)
快乐的向某
机器人路径规划算法算法python机器学习人工智能动态规划自动驾驶无人机
文章目录引言定义基本原理及公式推导RRT*算法的基本原理公式推导和变量解释特性代码示例Python代码代码运行结果应用案例优化和挑战优化方面面临的挑战总结引言RRT*(Rapidly-exploringRandomTreesStar)算法是一种用于高效路径规划的算法,特别适用于复杂或约束性的环境中。作为RRT(Rapidly-exploringRandomTrees)的改进版本,RRT*不仅继承了
- LLM OS 中的自然语言搜索引擎
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLMOS中的自然语言搜索引擎关键词:大语言模型、操作系统、自然语言搜索、语义理解、信息检索、人工智能、用户交互文章目录LLMOS中的自然语言搜索引擎1.背景介绍2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.2算法步骤详解3.3算法优缺点3.4算法应用领域4.数学模型和公式&详细讲解&举例说明4.1数学模型构建4.2公式推导过程4.3案例分析与讲解5.项目实践:代码实例和详
- 【LangChain编程:从入门到实践】自定义提示模板原理与应用实战 系列文章
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
文章目录【LangChain编程:从入门到实践】自定义提示模板01.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.2算法步骤详解3.3算法优缺点3.4算法应用领域4.数学模型和公式&详细讲解&举例说明4.1数学模型构建4.2公式推导过程4.3案例分析与讲解4.4常见问题解答5.项目实践:代码实例和详细解释说明
- GAN生成模型评价体系:从主观感知到客观度量的技术演进
青柚MATLAB学习
对抗网络生成对抗网络GAN评价指标WassFIDInceptionScore
摘要本文系统解析生成对抗网络(GAN)的评价方法体系。首先指出主观评价在人力成本、过拟合误判等方面的局限性,随后依次介绍InceptionScore、ModeScore等经典客观指标的原理与公式,对比KernelMMD、WassersteinDistance等分布度量方法的优劣,最后阐述FID、1-NN分类器等高效评价工具的应用场景。本文结合公式推导与实验结论,为GAN性能评估提供理论与实践指南。
- 生成对抗网络(GAN)基础原理深度解析:从直观理解到形式化表达
青柚MATLAB学习
对抗网络生成对抗网络GAN生成器判别器目标函数交叉熵损失
摘要本文详细解析生成对抗网络(GAN)的核心原理,从通俗类比入手,结合印假钞与警察博弈的案例阐述生成器与判别器的对抗机制;通过模型结构示意图,解析噪声采样、样本生成及判别流程;基于公式推导目标函数的数学本质,剖析判别器与生成器的优化逻辑;最后对比GAN目标函数与交叉熵损失的关联差异。本文结合公式推导与概念对比,助力读者建立GAN基础理论体系。关键词:生成对抗网络GAN生成器判别器目标函数交叉熵损失
- PSNR指标Pytorch实现
这张生成的图像能检测吗
优质GAN模型训练自己的数据集pytorch人工智能机器学习深度学习算法生成对抗网络计算机视觉
GAN模型中的PSNR指标详解1.PSNR基本概念PSNR(PeakSignal-to-NoiseRatio,峰值信噪比)是一个评估图像质量的重要指标,广泛用于衡量GAN生成图像与真实图像之间的相似度。核心思想信号:原始图像的信息噪声:生成图像与原始图像的差异峰值:图像像素的最大可能值(通常是255)PSNR值越高,表示生成图像质量越好,与原始图像越相似。2.数学公式推导MSE(均方误差)首先定义
- 线性回归原理推导与应用(七):逻辑回归原理与公式推导
Smilecoc
机器学习Python数据分析线性回归逻辑回归算法
逻辑回归是一种分类算法,常用于二分类,也就是得出的结果为是和不是,例如通过各种因素判断一个人是否生病,信用卡是否违约等。逻辑回归在社会和自然科学中应用非常广泛,前置知识线性回归逻辑回归的底层方法就是线性回归,所以需要对线性回归有基本的了解。具体的一元,多元线性回归原理在之前的文章中已经讲过,可以查看之前的文章https://blog.csdn.net/qq_42692386/article/det
- 关于贝叶斯公式的理解
程序员
一、贝叶斯公式推导条件概率基础条件概率定义:在事件B发生的条件下,事件A发生的概率P(A∣B)=P(A∩B)/P(B)(P(B)>0)联合概率的两种表达由乘法公式可得:P(A∩B)=P(A∣B)P(B)=P(B∣A)P(A)推导贝叶斯公式联立上述两式,消去联合概率:P(A∣B)=P(B∣A)⋅P(A)/P(B)其中:P(A∣B):后验概率(Posterior)P(A):先验概率(Prior)P(B
- 量化用到的机器学习书籍推荐
输出输入
人工智能+量化EA机器学习
以下是一些适合不同层次读者的机器学习书籍推荐:零基础入门-《机器学习入门必备》:这本书没有复杂的公式推导,而是通过类比、案例和图片,通俗易懂地讲解了机器学习的基本概念、工具、数据处理、建模与优化等内容,非常适合没有任何基础的人工智能爱好者。-《MachineLearningforHumans》:以通俗易懂的方式系统全面地介绍机器学习相关知识,理论部分之后还有充足的实践材料和最新进展与应用,适合初学
- 因果推断的可解释性与可信度:评估因果关系的有效性
AI天才研究院
AIAgent应用开发计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
因果推断的可解释性与可信度:评估因果关系的有效性关键词:因果推断、可解释性、可信度、因果关系评估、反事实分析、因果图、工具变量法、随机化实验文章目录因果推断的可解释性与可信度:评估因果关系的有效性1.背景介绍2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.2算法步骤详解3.3算法优缺点3.4算法应用领域4.数学模型和公式&详细讲解&举例说明4.1数学模型构建4.2公式推导过程
- 数据挖掘助力大数据领域的精准营销
大数据洞察
ai
数据挖掘助力大数据领域的精准营销关键词:数据挖掘、精准营销、大数据分析、机器学习、用户画像、推荐系统、客户细分摘要:本文深入探讨了数据挖掘技术如何赋能大数据领域的精准营销。文章首先介绍了精准营销的背景和挑战,然后详细解析了数据挖掘的核心概念和技术原理,包括用户画像构建、推荐算法和客户细分模型。通过Python代码实现和数学公式推导,展示了如何应用这些技术解决实际问题。文章还提供了实战案例、工具资源
- [16届蓝桥杯 2025 c++省 B] 画展布置
a东方青
蓝桥杯蓝桥杯c++算法
解题思路理解(L)的本质当(B)按平方值从小到大排序后,相邻项的差非负,此时(L)等于区间内最大平方值与最小平方值的差(数学公式推导)滑动窗口找最小差值遍历所有长度为(M)的连续区间(滑动窗口),计算每个区间内最大平方值(末尾元素(b[i+M-1]))与最小平方值(起始元素(b[i]))的差值(b[i+M-1]-b[i]),取这些差值中的最小值,即为(L)的最小值。#includeusingnam
- 分层强化学习:Option-Critic架构算法详解与Python实现
闲人编程
进阶算法案例架构算法python分层强化学习Option-Critic自动驾驶
目录分层强化学习:Option-Critic架构算法详解与Python实现1.引言2.Option-Critic架构算法概述2.1Option-Critic架构的定义2.2Option-Critic架构的优势2.3Option-Critic架构的应用场景3.Option-Critic架构算法的核心概念3.1选项(Options)3.2策略梯度3.3目标函数与梯度更新3.4公式推导4.Option-
- matlab从入门到精通符号计算,《MATLAB 从入门到精通教程》第6章 符号计算【精品】.ppt...
江泓
[摘要]第6章符号运算6.1符号对象的创建和使用6.2符号对象的运算6.3符号表达式的变换6.4符号微积分、极限和级数6.5符号积分变换6.6符号方程的求解6.7符号函数的可视化符号运算的对象是非数值的符号对象,对于像公式推导和因式分解等抽象的运算都可以通过符号运算来解决。MATLAB2006b对应的是SymbolicMathToolbox3.1.5。符号工具箱能够实现微积分运算、线性代数、表达式
- 简述Mean shift 算法及其实现
BryantJD
计算机视觉Meanshift算法聚类图像分割核密度估计特征空间
文章目录Meanshift是什么Meanshift算法的预备知识什么是特征什么是特征空间什么是核密度估计核函数的表示Meanshift算法Meanshift算法的公式推导Meanshift算法的流程Meanshift算法图示Meanshift算法应用MeanShift算法应用在聚类MeanShift算法图像分割Meanshift算法的不足之处参考文献Meanshift是什么均值偏移(Meanshi
- 机器学习常见公式推导
Karamajeff
机器学习人工智能machinelearning
线性层的反向传播对于函数Y=XWY=XWY=XW(注:XXX是一个m×nm\timesnm×n的矩阵,WWW是一个n×kn\timeskn×k的矩阵,YYY是一个m×km\timeskm×k的矩阵。这里的WWW通常代表模型的权重,而XXX代表输入数据。)如何求∂Y∂W\frac{\partialY}{\partialW}∂W∂Y呢,通常我们只关心其一个特定的切片,即∂Yij∂Wrs\frac{\p
- 【强化学习理论】状态价值函数与动作价值函数系列公式推导
Mocode
人工智能笔记
由于时常对状态价值函数与动作价值函数之间的定义区别、公式关系迷惑不清,此次进行梳理并作记录。理解公式推导需要先了解基础定义中几个概念。文章目录基础定义奖励函数回报价值价值函数状态转移矩阵策略状态转移函数状态价值函数动作价值函数状态价值函数与动作价值函数之间的关系==关系1====关系2==贝尔曼方程(BellmanEquation)贝尔曼期望方程(BellmanExpectationEquatio
- 探索大语言模型(LLM):Transformer 与 BERT从原理到实践
艾醒(AiXing-w)
探索大语言模型(LLM)语言模型transformerbert
Transformer与BERT:从原理到实践前言一、背景介绍二、核心公式推导1.注意力机制(AttentionMechanism)2.多头注意力机制(Multi-HeadAttention)3.Transformer编码器(TransformerEncoder)4.BERT的预训练任务三、代码实现1.注意力机制2.多头注意力机制3.Transformer编码器层4.Transformer编码器5
- KISS-ICP核心代码解析
大山同学
代码解析前端算法javascriptSLAM机器人感知定位
文章目录1.核心函数1.GetCorrespondences函数2.BuildLinearSystem函数ICP的高斯牛顿解法公式推导3.高斯牛顿法求解1.核心函数该RegisterFrame函数的主要功能是对输入的点云帧进行配准。它将输入的点云帧与体素哈希图进行匹配,以初始位姿估计为起点,通过迭代最近点(ICP)算法来计算从初始位姿到最终配准位姿的变换矩阵。若体素哈希图为空,则直接返回初始位姿估
- 注意力机制
code 旭
AI人工智能学习python人工智能
实现了Bahdanau式加法注意力的核心计算逻辑。以下是三个线性层设计的完整技术解析:一、数学公式推导注意力分数计算流程:score(hdec,henc)=vT⋅tanh(W1⋅henc+W2⋅hdec)score(h_{dec},h_{enc})=v^T\cdot\tanh(W1\cdoth_{enc}+W2\cdoth_{dec})score(hdec,henc)=vT⋅tanh(W1⋅he
- 周志华《机器学习》——第六章、支持向量机
106106106
支持向量机机器学习人工智能
支持向量机(SupportVectorMachine,简称SVM)是一种经典的二分类模型,基本模型定义为特征空间中最大间隔的线性分类器,其学习的优化目标是间隔最大化,因此支持向量机本身可以转化为一个凸二次规划求解的问题。公式推导太麻烦,下面链接写得非常详细,有空再详细理解,先理解概念。存个链接【机器学习】支持向量机SVM(非常详细)-知乎
- YOLO学习笔记 | 基于YOLOv8的植物病害检测系统
单北斗SLAMer
毕业论文设计YOLO学习从零到1YOLO深度学习python
以下是基于YOLOv8的植物病害检测系统完整技术文档,包含原理分析、数学公式推导及代码实现框架。基于YOLOv8的智能植物病害检测系统研究摘要针对传统植物病害检测方法存在的效率低、泛化性差等问题,本研究提出一种基于改进YOLOv8算法的智能检测系统。通过设计轻量化特征提取网络,优化损失函数,并结合MATLABGUI开发人机交互界面。实验表明,系统在PlantVillage数据集上达到96.2%mA
- UWB:DS-TWR( Double-sided two-way ranging)双边测距公式推导:为啥是乘法?
Ankie(资深技术项目经理)
无线网络技术UWB原理和实操算法UWB测距FIRA双边测距
UWBDS-TWR(Double-sidedtwo-wayranging)双边测距为啥是乘法??公式:我们先看单边Single-SidedTwo-WayRanging(SS-TWR)单边很好理解。symmetricdouble-sidedTWR(SDS-TWR)对称的双边测距再看双边
- 312个免费高速HTTP代理IP(能隐藏自己真实IP地址)
yangshangchuan
高速免费superwordHTTP代理
124.88.67.20:843
190.36.223.93:8080
117.147.221.38:8123
122.228.92.103:3128
183.247.211.159:8123
124.88.67.35:81
112.18.51.167:8123
218.28.96.39:3128
49.94.160.198:3128
183.20
- pull解析和json编码
百合不是茶
androidpull解析json
n.json文件:
[{name:java,lan:c++,age:17},{name:android,lan:java,age:8}]
pull.xml文件
<?xml version="1.0" encoding="utf-8"?>
<stu>
<name>java
- [能源与矿产]石油与地球生态系统
comsci
能源
按照苏联的科学界的说法,石油并非是远古的生物残骸的演变产物,而是一种可以由某些特殊地质结构和物理条件生产出来的东西,也就是说,石油是可以自增长的....
那么我们做一个猜想: 石油好像是地球的体液,我们地球具有自动产生石油的某种机制,只要我们不过量开采石油,并保护好
- 类与对象浅谈
沐刃青蛟
java基础
类,字面理解,便是同一种事物的总称,比如人类,是对世界上所有人的一个总称。而对象,便是类的具体化,实例化,是一个具体事物,比如张飞这个人,就是人类的一个对象。但要注意的是:张飞这个人是对象,而不是张飞,张飞只是他这个人的名字,是他的属性而已。而一个类中包含了属性和方法这两兄弟,他们分别用来描述对象的行为和性质(感觉应该是
- 新站开始被收录后,我们应该做什么?
IT独行者
PHPseo
新站开始被收录后,我们应该做什么?
百度终于开始收录自己的网站了,作为站长,你是不是觉得那一刻很有成就感呢,同时,你是不是又很茫然,不知道下一步该做什么了?至少我当初就是这样,在这里和大家一份分享一下新站收录后,我们要做哪些工作。
至于如何让百度快速收录自己的网站,可以参考我之前的帖子《新站让百
- oracle 连接碰到的问题
文强chu
oracle
Unable to find a java Virtual Machine--安装64位版Oracle11gR2后无法启动SQLDeveloper的解决方案
作者:草根IT网 来源:未知 人气:813标签:
导读:安装64位版Oracle11gR2后发现启动SQLDeveloper时弹出配置java.exe的路径,找到Oracle自带java.exe后产生的路径“C:\app\用户名\prod
- Swing中按ctrl键同时移动鼠标拖动组件(类中多借口共享同一数据)
小桔子
java继承swing接口监听
都知道java中类只能单继承,但可以实现多个接口,但我发现实现多个接口之后,多个接口却不能共享同一个数据,应用开发中想实现:当用户按着ctrl键时,可以用鼠标点击拖动组件,比如说文本框。
编写一个监听实现KeyListener,NouseListener,MouseMotionListener三个接口,重写方法。定义一个全局变量boolea
- linux常用的命令
aichenglong
linux常用命令
1 startx切换到图形化界面
2 man命令:查看帮助信息
man 需要查看的命令,man命令提供了大量的帮助信息,一般可以分成4个部分
name:对命令的简单说明
synopsis:命令的使用格式说明
description:命令的详细说明信息
options:命令的各项说明
3 date:显示时间
语法:date [OPTION]... [+FORMAT]
- eclipse内存优化
AILIKES
javaeclipsejvmjdk
一 基本说明 在JVM中,总体上分2块内存区,默认空余堆内存小于 40%时,JVM就会增大堆直到-Xmx的最大限制;空余堆内存大于70%时,JVM会减少堆直到-Xms的最小限制。 1)堆内存(Heap memory):堆是运行时数据区域,所有类实例和数组的内存均从此处分配,是Java代码可及的内存,是留给开发人
- 关键字的使用探讨
百合不是茶
关键字
//关键字的使用探讨/*访问关键词private 只能在本类中访问public 只能在本工程中访问protected 只能在包中和子类中访问默认的 只能在包中访问*//*final 类 方法 变量 final 类 不能被继承 final 方法 不能被子类覆盖,但可以继承 final 变量 只能有一次赋值,赋值后不能改变 final 不能用来修饰构造方法*///this()
- JS中定义对象的几种方式
bijian1013
js
1. 基于已有对象扩充其对象和方法(只适合于临时的生成一个对象):
<html>
<head>
<title>基于已有对象扩充其对象和方法(只适合于临时的生成一个对象)</title>
</head>
<script>
var obj = new Object();
- 表驱动法实例
bijian1013
java表驱动法TDD
获得月的天数是典型的直接访问驱动表方式的实例,下面我们来展示一下:
MonthDaysTest.java
package com.study.test;
import org.junit.Assert;
import org.junit.Test;
import com.study.MonthDays;
public class MonthDaysTest {
@T
- LInux启停重启常用服务器的脚本
bit1129
linux
启动,停止和重启常用服务器的Bash脚本,对于每个服务器,需要根据实际的安装路径做相应的修改
#! /bin/bash
Servers=(Apache2, Nginx, Resin, Tomcat, Couchbase, SVN, ActiveMQ, Mongo);
Ops=(Start, Stop, Restart);
currentDir=$(pwd);
echo
- 【HBase六】REST操作HBase
bit1129
hbase
HBase提供了REST风格的服务方便查看HBase集群的信息,以及执行增删改查操作
1. 启动和停止HBase REST 服务 1.1 启动REST服务
前台启动(默认端口号8080)
[hadoop@hadoop bin]$ ./hbase rest start
后台启动
hbase-daemon.sh start rest
启动时指定
- 大话zabbix 3.0设计假设
ronin47
What’s new in Zabbix 2.0?
去年开始使用Zabbix的时候,是1.8.X的版本,今年Zabbix已经跨入了2.0的时代。看了2.0的release notes,和performance相关的有下面几个:
:: Performance improvements::Trigger related da
- http错误码大全
byalias
http协议javaweb
响应码由三位十进制数字组成,它们出现在由HTTP服务器发送的响应的第一行。
响应码分五种类型,由它们的第一位数字表示:
1)1xx:信息,请求收到,继续处理
2)2xx:成功,行为被成功地接受、理解和采纳
3)3xx:重定向,为了完成请求,必须进一步执行的动作
4)4xx:客户端错误,请求包含语法错误或者请求无法实现
5)5xx:服务器错误,服务器不能实现一种明显无效的请求
- J2EE设计模式-Intercepting Filter
bylijinnan
java设计模式数据结构
Intercepting Filter类似于职责链模式
有两种实现
其中一种是Filter之间没有联系,全部Filter都存放在FilterChain中,由FilterChain来有序或无序地把把所有Filter调用一遍。没有用到链表这种数据结构。示例如下:
package com.ljn.filter.custom;
import java.util.ArrayList;
- 修改jboss端口
chicony
jboss
修改jboss端口
%JBOSS_HOME%\server\{服务实例名}\conf\bindingservice.beans\META-INF\bindings-jboss-beans.xml
中找到
<!-- The ports-default bindings are obtained by taking the base bindin
- c++ 用类模版实现数组类
CrazyMizzz
C++
最近c++学到数组类,写了代码将他实现,基本具有vector类的功能
#include<iostream>
#include<string>
#include<cassert>
using namespace std;
template<class T>
class Array
{
public:
//构造函数
- hadoop dfs.datanode.du.reserved 预留空间配置方法
daizj
hadoop预留空间
对于datanode配置预留空间的方法 为:在hdfs-site.xml添加如下配置
<property>
<name>dfs.datanode.du.reserved</name>
<value>10737418240</value>
 
- mysql远程访问的设置
dcj3sjt126com
mysql防火墙
第一步: 激活网络设置 你需要编辑mysql配置文件my.cnf. 通常状况,my.cnf放置于在以下目录: /etc/mysql/my.cnf (Debian linux) /etc/my.cnf (Red Hat Linux/Fedora Linux) /var/db/mysql/my.cnf (FreeBSD) 然后用vi编辑my.cnf,修改内容从以下行: [mysqld] 你所需要: 1
- ios 使用特定的popToViewController返回到相应的Controller
dcj3sjt126com
controller
1、取navigationCtroller中的Controllers
NSArray * ctrlArray = self.navigationController.viewControllers;
2、取出后,执行,
[self.navigationController popToViewController:[ctrlArray objectAtIndex:0] animated:YES
- Linux正则表达式和通配符的区别
eksliang
正则表达式通配符和正则表达式的区别通配符
转载请出自出处:http://eksliang.iteye.com/blog/1976579
首先得明白二者是截然不同的
通配符只能用在shell命令中,用来处理字符串的的匹配。
判断一个命令是否为bash shell(linux 默认的shell)的内置命令
type -t commad
返回结果含义
file 表示为外部命令
alias 表示该
- Ubuntu Mysql Install and CONF
gengzg
Install
http://www.navicat.com.cn/download/navicat-for-mysql
Step1: 下载Navicat ,网址:http://www.navicat.com/en/download/download.html
Step2:进入下载目录,解压压缩包:tar -zxvf navicat11_mysql_en.tar.gz
- 批处理,删除文件bat
huqiji
windowsdos
@echo off
::演示:删除指定路径下指定天数之前(以文件名中包含的日期字符串为准)的文件。
::如果演示结果无误,把del前面的echo去掉,即可实现真正删除。
::本例假设文件名中包含的日期字符串(比如:bak-2009-12-25.log)
rem 指定待删除文件的存放路径
set SrcDir=C:/Test/BatHome
rem 指定天数
set DaysAgo=1
- 跨浏览器兼容的HTML5视频音频播放器
天梯梦
html5
HTML5的video和audio标签是用来在网页中加入视频和音频的标签,在支持html5的浏览器中不需要预先加载Adobe Flash浏览器插件就能轻松快速的播放视频和音频文件。而html5media.js可以在不支持html5的浏览器上使video和audio标签生效。 How to enable <video> and <audio> tags in
- Bundle自定义数据传递
hm4123660
androidSerializable自定义数据传递BundleParcelable
我们都知道Bundle可能过put****()方法添加各种基本类型的数据,Intent也可以通过putExtras(Bundle)将数据添加进去,然后通过startActivity()跳到下一下Activity的时候就把数据也传到下一个Activity了。如传递一个字符串到下一个Activity
把数据放到Intent
- C#:异步编程和线程的使用(.NET 4.5 )
powertoolsteam
.net线程C#异步编程
异步编程和线程处理是并发或并行编程非常重要的功能特征。为了实现异步编程,可使用线程也可以不用。将异步与线程同时讲,将有助于我们更好的理解它们的特征。
本文中涉及关键知识点
1. 异步编程
2. 线程的使用
3. 基于任务的异步模式
4. 并行编程
5. 总结
异步编程
什么是异步操作?异步操作是指某些操作能够独立运行,不依赖主流程或主其他处理流程。通常情况下,C#程序
- spark 查看 job history 日志
Stark_Summer
日志sparkhistoryjob
SPARK_HOME/conf 下:
spark-defaults.conf 增加如下内容
spark.eventLog.enabled true spark.eventLog.dir hdfs://master:8020/var/log/spark spark.eventLog.compress true
spark-env.sh 增加如下内容
export SP
- SSH框架搭建
wangxiukai2015eye
springHibernatestruts
MyEclipse搭建SSH框架 Struts Spring Hibernate
1、new一个web project。
2、右键项目,为项目添加Struts支持。
选择Struts2 Core Libraries -<MyEclipes-Library>
点击Finish。src目录下多了struts