keras 调参, 优化, 一些设置等

1. 关闭GPU,只使用CPU

importtensorflow之前,加上:

import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"   # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"] = 


指定使用哪一个GPU

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2"



2.设置keras占用GPU内存的比例:

import os
import tensorflow as tf
import keras.backend.tensorflow_backend as K

def get_session(gpu_fraction=0.3):
    '''Assume that you have 6GB of GPU memory and want to allocate ~2GB'''

    num_threads = os.environ.get('OMP_NUM_THREADS')
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_fraction)

    if num_threads:
        return tf.Session(config=tf.ConfigProto(
            gpu_options=gpu_options, intra_op_parallelism_threads=num_threads))
    else:
        return tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

K.set_session(get_session())


同时指定GPU和内存  (转载自点击打开链接)


import os
import tensorflow as tf
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.3
set_session(tf.Session(config=config))


3.Callback中设置learning rateSchedule,使用Early Stop:

# Callback that implements learning rate schedule
schedule = Step([20], [1e-4, 1e-6])

history = model.fit(X_train, Y_train,
                    batch_size=batch_size, nb_epoch=nb_epoch, validation_data=(X_test,Y_test),
                    callbacks=[schedule,
keras.callbacks.ModelCheckpoint(filepath, monitor='val_loss', verbose=0,save_best_only=True, mode='auto')

# 该回调函数将在每个epoch后保存模型到filepath
 # ,keras.callbacks.EarlyStopping(monitor='val_loss', patience=5, verbose=0, mode='auto')# 当监测值不再改善时,该回调函数将中止训练.
#当early stop被激活(如发现loss相比上一个epoch训练没有下降),则经过patience个epoch后停止训练 ], verbose=2, shuffle=True)

Step()定义如下:

class Step(Callback):

    def __init__(self, steps, learning_rates, verbose=0):
        self.steps = steps
        self.lr = learning_rates
        self.verbose = verbose

    def change_lr(self, new_lr):
        old_lr = K.get_value(self.model.optimizer.lr)
        K.set_value(self.model.optimizer.lr, new_lr)
        if self.verbose == 1:
            print('Learning rate is %g' %new_lr)

    def on_epoch_begin(self, epoch, logs={}):
        for i, step in enumerate(self.steps):
            if epoch < step:
                self.change_lr(self.lr[i])
                return
        self.change_lr(self.lr[i+1])

    def get_config(self):
        config = {'class': type(self).__name__,
                  'steps': self.steps,
                  'learning_rates': self.lr,
                  'verbose': self.verbose}
        return config

    @classmethod
    def from_config(cls, config):
        offset = config.get('epoch_offset', 0)
        steps = [step - offset for step in config['steps']]
        return cls(steps, config['learning_rates'],
                   verbose=config.get('verbose', 0))


附:gihub上的方法示例 (https://github.com/fchollet/keras/issues/888) 

自定义schedule: learning rateepoch的函数

def scheduler(epoch):
    if epoch == 5:
        model.lr.set_value(.02)
    return model.lr.get_value()

change_lr = LearningRateScheduler(scheduler)

model.fit(x_embed, y, nb_epoch=1, batch_size = batch_size, show_accuracy=True,
       callbacks=[chage_lr])


keras文档的函数: LearningRateScheduler

keras.callbacks.LearningRateScheduler(schedule)

Learning rate scheduler.

Arguments

  • schedule:a function that takes an epoch index as input (integer, indexed from0) and returns a new learning rate as output(float).注意schedule的返回值是float类型!





ReduceLROnPlateau

keras.callbacks.ReduceLROnPlateau(monitor='val_loss',factor=0.1, patience=10, 
verbose=0, mode='auto', epsilon=0.0001,cooldown=0, min_lr=0)


Reduce learning rate when a metric has stopped improving.

Models often benefit from reducing the learning rate by a factor of 2-10 once learning stagnates. This callback monitors a quantity and if no improvement is seen for a 'patience' number of epochs, the learning rate is reduced.

Example

reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=0.001)
model.fit(X_train, Y_train, callbacks=[reduce_lr])

4.使用sickt-learn GridSearchCVkerassickt-learnclassificationregression接口进行网格超参数寻优

注意:keras/tensorflow下使用GPU时,进行多进程的gridsearch会报错,这时设置默认状态只用单进程或者将后台修改成为theano

也可以切换到CPU模式下进行多线程的参数网格搜索,实验发现在CPU上进行sickt-learnGridSearch搜索速度更快(因为使用了所有CPU内核)

# Use scikit-learn to grid search the dropout rate
import numpy
from sklearn.grid_search import GridSearchCV
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.wrappers.scikit_learn import KerasClassifier
from keras.constraints import maxnorm
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"   # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"] = ""

# Function to create model, required for KerasClassifier
def create_model(dropout_rate=0.0, weight_constraint=0):
    # create model
    model = Sequential()
    model.add(Dense(12, input_dim=8, init='uniform', 
activation='linear', W_constraint=maxnorm(weight_constraint)))
    model.add(Dropout(dropout_rate))
    model.add(Dense(1, init='uniform', activation='sigmoid'))
    # Compile model
    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# load dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# create model
model = KerasClassifier(build_fn=create_model, nb_epoch=100, batch_size=10, verbose=2)
# define the grid search parameters
weight_constraint = [1, 2, 3, 4, 5]
dropout_rate = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
param_grid = dict(dropout_rate=dropout_rate, weight_constraint=weight_constraint)
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1)
grid_result = grid.fit(X, Y)
# summarize results
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
for params, mean_score, scores in grid_result.grid_scores_:
    print("%f (%f) with: %r" % (scores.mean(), scores.std(), params)

有趣的地方:

笔者切换不同后台,分别在CPU,GPU下运行搜索程序

tensorflowGPU下使用单进程,CPU下使用多进程,理由上述已说明,发现使用tensorflow为后端,在CPU下多进程搜索速度最快(4.0s)GPU单进程搜索需要32s

而当后端为theano时,CPU,GPU下搜索速度几乎一样(6.2s),慢一点。笔者使用GPU:Nvidia GTX1080CPU:inter i7-6700k

参考:

http://www.cnblogs.com/dmzhuo/p/6214486.html

https://groups.google.com/forum/#!topic/keras-users/MFUEY9P1sc8





你可能感兴趣的:(keras)