- kinect深度距离误差_关于双目摄像头深度测量精度分析
是因为太久
kinect深度距离误差
一、双目摄像头深度测量分析双目摄像头拍摄同一场景下左右两幅图像,运用立体匹配算法获取视差图,进而获取深度图。双目摄像头SDK中采用SGBM算法,由校正后的图像获取视差图。视差图表示,空间物体在左视图中的成像点与在右视图中成像点在水平方向上的像素差,即下图中的Xl-Xr。图1双目视差一维原理图深度与视差转换关系:depth=(fx*baseline)/disparity小觅双目摄像头SDK中采用re
- 双目立体匹配博客&资料汇总
@兄弟情深@
双目立体视觉计算机视觉
网上对于双目立体匹配算法的学习资料有很多,本文旨在汇总网上优质的资源,并总结学习路线,从传统的SGM、PatchMatch、AD-Census,到近年来的各种深度学习双目立体匹配网络,双目立体匹配算法不断升级,并且一直是学术界研究的热门,值得探索!1、基础理论双目立体匹配有以下几个关键问题:一是如何对双目设备进行标定,只要标定后进行图像极线矫正,才能成为一个理想的双目系统;二是立体匹配算法,经典的
- 论文阅读《Semantic Stereo Matching with Pyramid Cost Volumes》
cunese0088
深度学习
SSPCV-Net(语义立体匹配网络)目的:进一步捕捉视差的细节主要模块:数据集:SceneFlow,KITTI2012,KITTI2015,Cityscape(比较泛化能力)-------------------------------------------------------------------------------------------------------Concatevo
- 立体匹配常用数据集整理
Scurry﹉
人工智能深度学习计算机视觉
文章目录前言一、常用数据集1.SceneFlow数据集2.KITTI数据集3.Middlebury数据集二、关于自己构建数据集训练的一些问题前言本文主要对立体匹配算法常用的公开数据集进行整理,包括数据集的简要介绍和下载链接,以及自己构建数据集训练的一些问题。一、常用数据集1.SceneFlow数据集Sceneflow数据集是CVPR2016提出的,其目的就是构建一个大规模的合成数据集,用来训练深度
- 基于OpenCV的单目测距
_老码
项目实战opencv人工智能计算机视觉
随着计算机视觉技术的发展,单目测距作为一种重要的视觉测量手段,在众多领域得到了广泛的应用。本文将探讨基于OpenCV的单目测距原理、局限性、实际应用场景以及一些优化方案。单目测距的原理单目测距是指利用一台摄像机拍摄到的单一图像来进行距离测量的技术。与双目测距相比,单目测距不需要复杂的立体匹配算法,因此具有计算量小、实现简单的特点。然而,单目测距也面临着许多挑战,如尺度模糊性、深度信息缺乏等问题。单
- 【图像处理】基于双目立体匹配的景深计算(Matlab代码实现)
然哥爱编程
图像处理matlab数码相机
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述1.双目相机标定2.图像预处理3.特征提取与匹配4.视差计算5.深度图生成与校正6.景深计算7.误差分析与优化应用领域2运行结果3参考文献4Matlab代码实现1概述双目立体匹配一直是双眼视觉的研究热点。双目相机捕获同一场景的左右视点图像,使用立体匹配
- OpenCV相机标定与3D重建(66)对立体匹配生成的视差图(disparity map)进行验证的函数validateDisparity()的使用
jndingxin
OpenCVopencv3d
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述使用左右检查来验证视差。矩阵“cost”应该由立体对应算法计算。cv::validateDisparity函数是OpenCV库中用于对立体匹配生成的视差图(disparitymap)进行后处理的一个工具。其主要功能是对计算出的视差值进行验证,确保相邻像素间的视差值
- yolov5单目测距+速度测量+目标跟踪
cv_2025
YOLO目标跟踪人工智能计算机视觉机器学习图像处理opencv
要在YOLOv5中添加测距和测速功能,您需要了解以下两个部分的原理:单目测距算法单目测距是使用单个摄像头来估计场景中物体的距离。常见的单目测距算法包括基于视差的方法(如立体匹配)和基于深度学习的方法(如神经网络)。基于深度学习的方法通常使用卷积神经网络(CNN)来学习从图像到深度图的映射关系。单目测距代码单目测距涉及到坐标转换,代码如下:defconvert_2D_to_3D(point2D,R,
- 【小白深度教程 1.5】手把手教你用立体匹配进行双目深度估计,以及 3D 点云生成(含 Python 代码解读)
小寒学姐学AI
从零开始的深度补全和深度估计3dpython人工智能计算机视觉自动驾驶深度学习笔记
【小白深度教程1.5】手把手教你用立体匹配进行双目深度估计,以及3D点云生成(含Python代码解读)1.立体匹配的原理2.块匹配算法(BlockMatchingAlgorithm)2.1代码中的立体匹配过程概述2.2代码原理及公式2.2.1.窗口匹配和代价函数(SAD)2.2.2.匹配过程2.2.3.视差图生成2.3代码的整体算法流程2.4性能与优化3.加载双目图像计算视差4.读取相机参数并计算
- 科普类——双目视觉在自动驾驶中存在的问题、挑战以及解决方案(三)
JANGHIGH
科普类无人驾驶自动驾驶人工智能机器学习
科普类——双目视觉在自动驾驶中存在的问题、挑战以及解决方案(三)双目视觉在自动驾驶中的应用虽然具有许多优势,但也存在一些问题和挑战,这些问题在不同的驾驶环境和条件下可能会有所不同。以下是一些主要问题及其可能的解决方案:立体匹配和视差计算:双目视觉的核心在于通过计算两幅图像之间的视差来获取深度信息。然而,立体匹配算法在处理遮挡、无特征区域或具有重复图案的高纹理区域时可能会出现精度问题。解决方案包括使
- 《RAFT-Stereo:Multilevel Recurrent Field Transforms for Stereo Matching》论文笔记
m_buddy
#DepthEstimation#OpticalFlowRAFT-Stereo
参考代码:RAFT-Stereo1.概述导读:RAFT算法是非常经典的立体匹配算法,在光流和立体匹配任务中有着广泛的运用。而这篇文章正是基于RAFT并将其运用到了立体匹配中,并且在如下的几个方面进行改进:1)相比原生的RAFT算法钟重点关注X轴(W方向)的视差信息,前提是输入的图像对需要事先经过极线校准;2)在GPU的update阶段使用stride为[8,16,32][8,16,32][8,16
- 双目相机立体匹配基础
极客范儿
传感器标定双目相机立体匹配
双目匹配就是用左相机和右相机去拍摄同一个点,目的是找到三维世界的同一个点,也就是在左相机和右相机中的成像点之间的像素差(视差),根据视差去求解深度,那么找到左相机点到右相机的同一个对应点这个过程就是双目相机立体匹配。一、双目视觉流程双目视觉流程是通过双目相机的左相机和右相机拍摄标定板的图片制作标定(离线),在线拍摄后进行矫正。满足两个相机是平行的要求,做匹配点也能满足从一维在同一行去搜索,接着进行
- 第一个项目总结:双目测距(python代码转为c++代码,最终输出点云图,再转为ros点云图,再实现可视化)
zerogin+
c++opencv开发语言
目录1.双目成像原理2.双目测距python代码3.python代码转为c++代码(1)双目相机参数(2)立体校正(3)立体匹配4.opencv的点云图转为ros点云图1.双目成像原理摘自《视觉SLAM十四讲》2.双目测距python代码(46条消息)双目测距理论及其python实现_python双目测距_javastart的博客-CSDN博客具体过程为:双目标定-->立体校正(含消除畸变)-->
- 立体视觉几何 (二)
dc爱傲雪和技术
计算机视觉
1.视差2.立体匹配立体匹配的基本概念:匹配目标:在立体匹配中,主要目标是确定左图像中像素的右图像中的对应像素。这个对应像素通常位于相同的行。视差(Disparity):视差d是右图像中对应像素xr和左图像中像素xl之间的水平位置差。视差是深度信息的关键指标。匹配方法:方法涉及在左图像中以某个像素为中心取一个窗口W,然后将这个窗口沿水平方向平移视差d,并将其放置在右图像中。接着比较左图像中窗口W和
- KITTI2012、ETH3D数据集下载
代码写着写着就会了
ubuntulinux
KITTI2012/2015双目立体匹配(stereomatching)数据集百度云下载_kitti2015数据集百度云-CSDN博客Datasets-ETH3D
- 使用opencv做双目测距(相机标定+立体匹配+测距)
AAI机器之心
opencv数码相机人工智能pytorch机器学习计算机视觉
最近在做双目测距,觉得有必要记录点东西,所以我的第一篇博客就这么诞生啦~双目测距属于立体视觉这一块,我觉得应该有很多人踩过这个坑了,但网上的资料依旧是云里雾里的,要么是理论讲一大堆,最后发现还不知道怎么做,要么就是直接代码一贴,让你懵逼。所以今天我想做的,是尽量给大家一个明确的阐述,并且能够上手做出来。一、标定首先我们要对摄像头做标定,具体的公式推导在learningopencv中有详细的解释,这
- [2015 Springer] Local Image Descriptor: Modern Approaches——1 Introduction
AllisWell_WP
计算机视觉图像处理书翻译计算机视觉图像处理特征提取描述符翻译
转载请注明链接:有问题请及时联系博主:Alliswell_WP持续更新中…翻译本地图像描述符:现代方法——作者:BinFan,ZhenhuaWang,FuchaoWu有关该系列的更多信息,请访问http://www.springer.com/series/10028前言1在过去的15年中,特征点描述符已成为计算机视觉社区中必不可少的工具。它们是从图像检索到多图像立体匹配以及从表面重建到图像增强等应
- UI演示双视图立体匹配与重建
Jurio.
CVPython科研经验uiqtpythonopencv
相关文章:PyQt5和Qtdesigner的详细安装教程:https://blog.csdn.net/qq_43811536/article/details/135185233?spm=1001.2014.3001.5501Qtdesigner界面和所有组件功能的详细介绍:https://blog.csdn.net/qq_43811536/article/details/135186862?spm
- 【论文简述】Rethinking Cross-Entropy Loss for Stereo Matching Networks(arxiv 2023)
华科附小第一名
立体匹配立体匹配交叉熵损失过渡平滑和不对准问题跨域泛化
一、论文简述1.第一作者:PengXu2.发表年份:20233.发表期刊:arxiv4.关键词:立体匹配,交叉熵损失,过渡平滑和不对准问题,跨域泛化5.探索动机:立体匹配通常被认为是深度学习中的一个回归任务,通常采用平滑L1损失结合Soft-Argmax估计器来训练网络,达到亚像素级的视差精度。然而,平滑L1损失缺乏对代价体的直接约束,在训练过程中容易出现过拟合。Soft-Argmax是基于网络输
- 立体匹配算法(Stereo correspondence)SGM
ouger爱编程
双目视觉原理与攻击算法
SGM(Semi-GlobalMatching)原理:SGM的原理在wiki百科和matlab官网上有比较详细的解释:wikimatlab如果想完全了解原理还是建议看原论文paper(我就不看了,懒癌犯了。)优质论文解读和代码实现一位大神自己用c++实现的SGM算法github先介绍两个重要的参数:注:这一部分参考的是matlab的解释,后面的部分是参考的opencv的实现,细节可能有些出入,大体
- Qt designer设计UI实例:双视图立体匹配与重建的可视化UI
Jurio.
科研经验CVqtui开发语言opencv
PyQt5和Qtdesigner的详细安装教程:https://blog.csdn.net/qq_43811536/article/details/135185233?spm=1001.2014.3001.5501Qtdesigner界面和所有组件功能的详细介绍:https://blog.csdn.net/qq_43811536/article/details/135186862?spm=1001
- 【论文简述】High-frequency Stereo Matching Network(CVPR 2023)
华科附小第一名
立体匹配3D重建深度学习MVS立体匹配高频信息LSTM
一、论文简述1.第一作者:HaoliangZhao2.发表年份:20233.发表期刊:CVPR4.关键词:立体匹配、MVS、深度学习、高频信息、LSTM5.探索动机:(1)当涉及到估计的视差图的更精细的特征时,大多数当前的方法都是不足的。特别是对于物体的边缘性能。在散景和渲染应用程序中,视差图的边缘性能对最终结果至关重要。(2)无纹理区域的失配和薄物体的缺失也是导致视差图显著恶化的重要因素。例如,
- 【论文简述】Learning Depth Estimation for Transparent and Mirror Surfaces(ICCV 2023)
华科附小第一名
深度估计立体匹配深度估计立体匹配深度学习分割透明物体镜子
一、论文简述1.第一作者:AlexCostanzino2.发表年份:20233.发表期刊:ICCV4.关键词:深度感知、立体匹配、深度学习、分割、透明物体、镜子5.探索动机:透明或镜面(ToM)制成的材料,从建筑物的玻璃窗到汽车和电器的反射表面。对于利用计算机视觉在未知环境中操作的自主代理来说,这可能是一个艰巨的挑战。在空间人工智能涉及的众多任务中,对于计算机视觉算法和深度网络来说,准确估计这些表
- yolov5单目测距+速度测量+目标跟踪
阿利同学
目标跟踪人工智能深度学习单目测距yolov5测速yolov8测距
要在YOLOv5中添加测距和测速功能,您需要了解以下两个部分的原理:单目测距算法单目测距是使用单个摄像头来估计场景中物体的距离。常见的单目测距算法包括基于视差的方法(如立体匹配)和基于深度学习的方法(如神经网络)。基于深度学习的方法通常使用卷积神经网络(CNN)来学习从图像到深度图的映射关系。单目测距代码单目测距涉及到坐标转换,代码如下:defconvert_2D_to_3D(point2D,R,
- 论文阅读《Uncertainty Guided Adaptive Warping for Robust and Efficient Stereo Matching》
CV科研随想录
论文阅读论文阅读
论文地址:https://openaccess.thecvf.com/content/ICCV2023/html/Jing_Uncertainty_Guided_Adaptive_Warping_for_Robust_and_Efficient_Stereo_Matching_ICCV_2023_paper.html概述 当前基于相关性代价体的立体匹配方法在跨域预测上表现不佳,导致模型在现实世界
- 论文阅读《DPS-Net: Deep Polarimetric Stereo Depth Estimation》
CV科研随想录
论文阅读论文阅读
论文地址:https://openaccess.thecvf.com/content/ICCV2023/html/Tian_DPS-Net_Deep_Polarimetric_Stereo_Depth_Estimation_ICCV_2023_paper.html概述 立体匹配模型难以处理无纹理场景的匹配,现有的方法通常假设物体表面是光滑的,或者光照是受控的,这些条件在实际场景中很难满足,只适用
- 论文阅读《Masked representation learning for domain generalized stereo matching》
CV科研随想录
论文阅读论文阅读
论文地址:https://openaccess.thecvf.com/content/CVPR2023/html/Rao_Masked_Representation_Learning_for_Domain_Generalized_Stereo_Matching_CVPR_2023_paper.html概述 近年来,立体匹配的领域泛化能力受到了越来越多的关注,但是现有的方法往往忽略了模型在不同训练
- Deep Learning for Monocular Depth Estimation: A Review.基于深度学习的深度估计
qaaaaaaz
计算机视觉深度学习人工智能
传统的深度估计方法通常是使用双目相机,计算两个2D图像的视差,然后通过立体匹配和三角剖分得到深度图。然而,双目深度估计方法至少需要两个固定的摄像机,当场景的纹理较少或者没有纹理的时候,很难从图像中捕捉足够的特征来匹配。所以最近单目深度估计发展的越来越快,但是由于单目图像缺乏可靠的立体视觉关系,因此在三维空间中回归深度本质上是一种不适定问题。单目图像采用二维形式来重新反射三维世界,然而,有一维场景叫
- SGBM算法详解(一)
OrdinaryW
上一篇文章简单介绍了立体匹配算法相关的资源,这里简单总结一下立体匹配算法,总体来讲包含以下6个步骤:1.Preprocess(GaussBlur,SobelX,...etc)2.CostCompute(AD,SAD,SSD,BT,NCC,Census,...etc)3.CostAggregation(Boxfilter,CBCA,WMF,MST,...etc)4.CostOptimization(
- OpenCV:《OpenCV3编程入门》全书概要
航空界的小爬虫
openCV
目录一、模块二、算法介绍三、功能介绍四、图像处理(imgproc组件部分)五、图像变换(imgproc组件部分)六、图像轮廓和分割修复(imgproc组件部分)七、直方图与匹配(imgproc组件部分)八、角点检测(feature2d组件部分)九、特征检测与匹配(feature2d组件部分)十:学习书目一、模块calib3d:相机校准和三位重建contrib:人脸识别、立体匹配、人工视网膜模型co
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不