ORB-SLAM2运行自己的数据集(单目)

文章目录

    • 环境
    • 数据获取
    • 相机标定
    • 数据预处理

环境

· ubuntu 18.04
· ORB-SLAM2
假设环境已经配好且ORB-SLAM2已经编译完成

数据获取

可以用手机或者其他设备采集数据,我用的是Sony Xperia Z5采集的视频,视频分辨率为1920*1080,fps为59.87

相机标定

本例采用7x9的棋盘格进行相机标定,如图1所示
步骤:

  1. 获取标注图片,标注需要的棋盘格图片约15~25张
  2. 将棋盘格图片放入 ./img/ 文件夹中
  3. 运行标注脚本,得到标注参数(标注框的行、列参数需要自己调整)
    ORB-SLAM2运行自己的数据集(单目)_第1张图片
图片1 标定棋盘格 ↑
import numpy as np
import cv2
import glob
import os
'''
相机标定脚本
'''
# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 0.001)

row_no = 9
col_no = 7

#这里用的图7行*9列
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((row_no*col_no,3), np.float32)
objp[:,:2] = np.mgrid[0:row_no,0:col_no].T.reshape(-1,2)

# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.

images = os.listdir('./img/')

for fname in images:
    img = cv2.imread('./img/'+fname)
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

    # Find the chess board corners
    ret, corners = cv2.findChessboardCorners(gray, (row_no,col_no),None)

    # If found, add object points, image points (after refining them)
    if ret == True:
        objpoints.append(objp)

        corners2 = cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
        imgpoints.append(corners2)

        # Draw and display the corners
        img = cv2.drawChessboardCorners(img, (row_no,col_no), corners2,ret)
        cv2.imshow('img',img)
        cv2.waitKey(30)

cv2.destroyAllWindows()

ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1],None,None)
print(mtx)
print(dist)
np.savetxt('./matrix.txt',mtx)
np.savetxt('./dist.txt',dist)


h,  w = img.shape[:2]
newcameramtx, roi=cv2.getOptimalNewCameraMatrix(mtx,dist,(w,h),1,(w,h))
for fname in images:
    img = cv2.imread('./img/'+fname)
    # 通过调用函数,传递ROI参数就可以复制结果。
    dst = cv2.undistort(img, mtx, dist, None, newcameramtx)
    # crop the image
    x, y, w, h = roi
    dst = dst[y:y + h, x:x + w]
    cv2.imshow('img', img)
    cv2.imshow('dst', dst)
    cv2.waitKey(0)
    # 首先找到原图片与校正图片之间映射函数。然后使用重映射函数。
    # undistort
    # mapx, mapy = cv2.initUndistortRectifyMap(mtx, dist, None, newcameramtx, (w, h), 5)
    # dst = cv2.remap(img, mapx, mapy, cv2.INTER_LINEAR)
    #
    # # crop the image
    # x, y, w, h = roi
    # dst = dst[y:y + h, x:x + w]
    # cv2.imwrite('calibresult.png', dst)

标定结果如下:

相机内参矩阵

1.480823466461038151e+03 0.000000000000000000e+00 9.428762100578752552e+02
0.000000000000000000e+00 1.495030449101173872e+03 5.331657639570393030e+02
0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00

畸变系数

-5.551663673857653442e-02 9.888473859774349339e-02 -1.988202569460489292e-03 -1.191351830829561788e-02 -2.278315633704405818e-01

然后再到ORB_SLAM2/Examples/Monocular目录下复制KITTI00-02.yaml,重命名为z5.yaml,并打开,然后将上述标定的参数写入z5.yaml对应位置。

数据预处理

用z5拍摄一段视频,然后用一下脚本进行数据预处理

# coding:utf-8

import os
import cv2
import numpy as np
from multiprocessing import Pool

class Kitti():
    def __init__(self, video_parent_dir, frame_interval, img_width, img_height):
        '''
        :param video_father_dir:  video father dir file dir
        :param frame_interval:   every frame_interval save a key frame
        :param img_width:   img sequence width
        :param img_height:  img sequence height
        '''

        self.video_dirs = [video_parent_dir+dir for dir in os.listdir(video_parent_dir)]
        self.frame_interval = frame_interval
        self.img_width = img_width
        self.img_height = img_height
        self.dir_cnt = 0

    def get_format_name(self, idx, lenght):
        '''
        :param idx: given img index, such as 1, 2, 3
        :lenght: format name length
        :return: return format img name like 000001, 000002, ...
        '''
        cnt = lenght - 1
        prefix = ''
        nmb = idx
        while idx // 10 != 0:
            cnt -= 1
            idx = idx // 10
        for i in range(cnt):
            prefix += '0'
        return prefix + str(nmb)
    def run(self,video_dir):
        videoCapture = cv2.VideoCapture(video_dir)
        # get video fps
        fps = videoCapture.get(cv2.CAP_PROP_FPS)
        # get vide width and height
        size = (int(videoCapture.get(cv2.CAP_PROP_FRAME_WIDTH)), int(videoCapture.get(cv2.CAP_PROP_FRAME_HEIGHT)))

        width_offset = int((size[0] - self.img_width) / 2)
        height_offset = int((size[1] - self.img_height) / 2)
        print('=======================')
        print('init_size: ',size)
        print('dest_size: (',self.img_width,',',self.img_height,')')
        img_sequence_parentdir = './' + self.get_format_name(self.dir_cnt, 2)
        if not os.path.exists(img_sequence_parentdir):
            os.makedirs(img_sequence_parentdir)
            if not os.path.exists(img_sequence_parentdir + '/image_0/'):
                os.makedirs(img_sequence_parentdir + '/image_0/')
        # 读帧
        success, frame = videoCapture.read()
        total_frame_idx = 0  # video frame index
        count = 0  # keyframe number
        tmp_cnt = 0  # record new cycle frame number
        timestep = 0  # time step
        timestep_total = [0]  # save every time step
        print("Fps: ", fps)
        print('=======================')
        while success:
            # 每秒采2帧
            if tmp_cnt == 0 or tmp_cnt == self.frame_interval:
                format_img_name = img_sequence_parentdir + '/image_0/' + self.get_format_name(count, 6) + '.png'
                print(format_img_name)
                cv2.imwrite(format_img_name,
                            frame[height_offset:height_offset + self.img_height,
                            width_offset:width_offset + self.img_width])
                count += 1
                tmp_cnt = 0
                timestep += self.frame_interval / fps
                timestep_total.append(timestep)

            success, frame = videoCapture.read()  # 获取下一帧
            total_frame_idx = total_frame_idx + 1
            tmp_cnt += 1
        self.dir_cnt += 1
        np.savetxt(img_sequence_parentdir + '/times.txt', timestep_total)

    def main(self):
        # pool = Pool()
        # pool.map(self.run,self.video_dirs)
        # pool.close()
        # pool.join()

        for video_dir in self.video_dirs:
            self.run(video_dir)


if __name__ == "__main__":
    K = Kitti('./video/',2,1920,1080)
    K.main()

上述脚本运行完成后,会得到如下的文件:

00|

​ image_0

​ times.txt

image_0 保存的是关键帧序列, times.txt保存的是关键帧对应的时间
注:这里所指的关键帧是指我们在视频中每隔frame_interval 采样的帧。如,视频总长度为10帧,设置每隔1帧采样一帧,那么关键帧为第1,3,5,7,9 (index从零开始)。frame_interval 为Kitti类的第二个参数,可以自己调整。

class Kitti():
    def __init__(self, video_parent_dir, frame_interval, img_width, img_height):

使用自己拍摄的数据运行ORB-SLAM2,如下:

  1. 进入ORB_SLAM2目录

  2. ./Examples/Monocular/mono_kitti ./Vocabulary/ORBvoc.txt PATH_TO_z5.yaml ./PATH_TO_IMAGE_SEQUENCE

    (本机命令如下:./Examples/Monocular/mono_kitti ./Vocabulary/ORBvoc.txt ./Examples/z5.yaml /media/lab/ff048a6a-f7ae-4301-9843-39db29f48c47/lib/Downloads/img_sequence2/01)

最终结果:

你可能感兴趣的:(ORB-SLAM2)