- 根据序列推出不同二叉树的个数
ZYT_庄彦涛
数据结构数据结构栈序列
先序序列为a,b,c,d的不同二叉树的个数是()A.13B.14C.15D.16他们有一个卡特兰数公式,就是这么解的:,所以选B上面为正确答案,下面是我个人的理解,不保证正确:对这道题我说一下我的理解。它这个是要确定它的不同的二叉树的个数,所以我们要先了解怎么确定自己画出来的其中一个二叉树算是一个,那么将这些二叉树统计起来就是我们要的答案。那么怎么确定某个二叉树就算一个呢?题目给了我们先序序列,那
- 组合数 与卡特兰数
海风许愿
Acm算法c++算法数据结构c++
组合数与卡特兰数1a,b比较小时采用预处理方法,提前将所有的组合数都算出来,到时候直接查表采用的公式是C(a,b)=C(a-1,b)+C(a-1,b-1)原题链接:885.求组合数I-AcWing题库核心代码:for(inti=0;i=1e5时,显然已经不能直接开二维数组打表了,这样会爆数组但是我们可以开两个一维数组,一个存取i的阶乘,一个存取i阶乘的逆元我们可以直接从定义出发C(a,b)=a!/
- [leetcode] 22. 括号生成
会飞的大鱼人
leetcode算法dfs数据结构
文章目录题目描述解题方法方法一:dfs遍历java代码方法二:按照卡特兰数的思路递归求出有效括号组合java代码相似题目题目描述数字n代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且有效的括号组合。示例1:输入:n=3输出:["((()))","(()())","(())()","()(())","()()()"]示例2:输入:n=1输出:["()"]提示:1generatePar
- C++ 数论相关题目:卡特兰数应用、快速幂求组合数。满足条件的01序列
伏城无嗔
数论力扣算法笔记c++算法
给定n个0和n个1,它们将按照某种顺序排成长度为2n的序列,求它们能排列成的所有序列中,能够满足任意前缀序列中0的个数都不少于1的个数的序列有多少个。输出的答案对109+7取模。输入格式共一行,包含整数n。输出格式共一行,包含一个整数,表示答案。数据范围1≤n≤105输入样例:3输出样例:5上述描述了本题的公式推导,最终也就是求一个卡特兰数。本题中,求逆元取模的是一个质数,可以用快速幂来求,如果不
- 【数据结构】(C语言版)第三章:栈和队列
_popo_
#数据结构
文章目录一、栈1.顺序栈2.共享栈3.链栈4.练习题二、队列1.顺序存储2.链式存储3.双端队列4.练习题三、栈和队列的应用1.栈在括号匹配时的应用2.栈在表达式求值中的应用3.栈在递归时的应用4.队列——树的层次遍历5.队列——图的层次遍历6.队列——操作系统应用四、特殊矩阵1.压缩存储2.稀疏矩阵一、栈概念:先进后出不同的出栈序列的个数:(卡特兰数)基操:InitStack(&S);//初始化
- 卡特兰数
wean_a23e
之前看算法导论时,讲了给定几个数字,能构造出几种二叉树,当时只想到排列组合的解决方法,极其复杂又不好记,过段时间还忘了。。。。今天看大牛的文章,评论有人提及卡特兰数,了解后才知道这么优雅的解决思路。。卡特兰数前几项卡特兰数前几项为1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845,35357670,1296
- 卡特兰数
徐子尧
找工作
https://blog.csdn.net/wu_tongtong/article/details/78161211https://blog.csdn.net/wuzhekai1985/article/details/6764858/
- c语言程序设计卡特兰数问题,卡特兰数(Catalan)公式、证明、代码、典例
许小晴
c语言程序设计卡特兰数问题
大佬博客:传送门组合数公式:一、关于卡特兰数卡特兰数是一种经典的组合数,经常出现在各种计算中,其前几项为:1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845,35357670,129644790,477638700,1767263190,6564120420,24466267020,91482563640,
- c语言程序设计卡特兰数问题,求解圆上2N个点的连线问题(卡特兰数)
2063650662
c语言程序设计卡特兰数问题
题目描述圆上有2n个不同的点,两点之间连成直线段,要求这些线段不能共点.计算出有12个点时共有多少种不同的连线方式.设计C语言函数,intcount(intn),计算并返回圆上有2n个点时的连线方式数量.分析我们可以使用递归的思想来求解这道题.设2n个节点的连线方法种数为(F(n)).如上图(这里取n=4),不妨给所有的点进行编号,然后我们分析第一个节点,发现从1号节点出发可以分为两种情况:第一种
- 什么是卡特兰数及卡特兰数公式推导
wuxiaopengnihao1
sqlite
什么是卡特兰数?明安图数,又称卡塔兰数,英文名Catalannumber,是组合数学中一个常出现于各种计数问题中的数列。以中国蒙古族数学家明安图(1692-1763)和比利时的数学家欧仁·查理·卡塔兰(1814–1894)的名字来命名,其前几项为(从第零项开始):1,1,2,5,14,42,132,429,1430,4862,…卡特兰数的几何意义简单来说,卡特兰数就是一个有规律的数列,在坐标图中可
- 卡特兰数~
qssssss79
算法java开发语言
摘dalao:Ypuyu、长满石楠的荒原卡特兰数是组合数学中一个常在各种计数问题中出现的数列。以比利时的数学家欧仁·查理·卡塔兰(1814–1894)命名。历史上,清代数学家明安图(1692年-1763年)在其《割圜密率捷法》最早用到“卡塔兰数”,远远早于卡塔兰。有中国学者建议将此数命名为“明安图数”或“明安图-卡塔兰数”。即卡特兰数是符合以下公式的一个数列!公式(常见4个):h(n)=h(0)*
- 卡特兰数列编程实现
阿桑-
数据结构与算法
卡特兰(Catalan)数列典型特征有一类如下:1.可以分为两列2.每行从左向右依次递增(减),每列从上向下依次递增(减)/*2-10标准二维表问题问题为:设n是一个正整数。2*n的标准二维表是由正整数1,2,…2n组成的2*n数组,该数组的每行从左到右递增,每列从上到下递增。把数字从小到大进行排序,用0表示对应的数字在第一排,用1表示对应的数字在第二排,那么含有n个0,n个1的序列,就对应一种方
- 卡特兰数列
小宋想站起来
ACM常用序列
卡特兰数列的递推公式如下:h(n)=h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-1)h(0)(n>=2)例如:h(2)=h(0)*h(1)+h(1)*h(0)=1*1+1*1=2h(3)=h(0)*h(2)+h(1)*h(1)+h(2)*h(0)=1*2+1*1+2*1=5另类递推式:h(n)=h(n-1)*(4*n-2)/(n+1);递推关系的解为:h(n)=C(2n,n)/
- 低配版catalan数(算法)(C语言)
兮于怀
卡特兰数:n个节点最多可组成多少个形态不同的二叉树?n节车厢出栈的可能排列方式有多少种?#includeintmain(){intn;scanf("%d",&n);longlongintt=1,j=2*n;longlonginta,b,i,s=1;for(i=1;i<=n;i++){t=t*j;j--;}for(i=1;i<=n;i++){s=s*i;}a=t/s;b=a/(n+1);printf
- C++实现——卡特兰数列及其应用
浪漫硅谷
algorithm卡特兰数列
/*卡特兰数列的原理及其应用场景令h(1)=1,catalan数满足递归式:h(n)=h(1)*h(n-1)+h(2)*h(n-2)+…+h(n-1)h(1)(其中n>=2)该递推关系的解为:h(n)=c(2n-2,n-1)/n(n=1,2,3,…)1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845,3
- C++题目:卡特兰数
SunnyLi1106
C++基础经典例题c++
卡特兰数题目描述这里有一个经典的组合计数问题(这是2009年全国高中数学联赛河北省预赛试题):101010个人去买票,其中555个人每人只有五元纸币一张,另外555个人每人只有十元纸币一张。售票处初始的时候没有任何零钱。如果只关心每个人的持有的纸币面值(例如,持有五元纸币的人视作相同的),那么这些人有几种来买票的先后顺序,使售票处总能顺利找零。这个问题与“从正方网格中,从左下角走最短路到右上角,但
- C++卡特兰数
SkeletonKing233
C++算法卡特兰数
卡特兰数简介卡特兰数又称卡塔兰数,卡特兰数是组合数学中一个常出现在各种计数问题中的数列。以比利时的数学家欧仁·查理·卡塔兰(1814–1894)的名字来命名。但最早是欧拉在1753年解决凸包划分成三角形问题的时候,推出的Catalan数。初始值:f(0)=f(1)=1递推公式:f(n)=f(0)*f(n-1)+f(1)*f(n-2)+……+f(n-1)*f(0)解决的问题:括号化:P=a1×a2×
- 关于出栈序列的解法总结及卡特兰数的学习(C语言)
紫炁
算法dfs
出栈次序一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?解法1——递归/记忆化搜索考虑用一个二维数组f[i][j]模拟当前情况:i——进栈序列中还有i个待排的数,j——栈中有j个数,f[i][j]的值表示当前i,j情况下有几种输出方案。首先如果f[i][j]有值,直接调用即可(记忆化搜索,节省时间);如果i=0,即序列全部入栈,只有一种输出方法,所以返回1;考虑一般情况,有
- C#,卡特兰数(Catalan number,明安图数)的算法源代码
深度混淆
C#算法演义AlgorithmRecipesC#卡塔兰数入门教程
一、概要卡特兰数(英语:Catalannumber),又称卡塔兰数、明安图数,是组合数学中一种常出现于各种计数问题中的数列。以比利时的数学家欧仁·查理·卡特兰的名字来命名。1730年左右被蒙古族数学家明安图使用于对三角函数幂级数的推导而首次发现,1774年被发表在《割圜密率捷法》。二、卡特兰数的历史1730年,中国清代蒙古族数学家明安图比卡特兰更早使用了卡特兰数,在发现三角函数幂级数的过程中,见《
- 算法学习总结
joker D888
算法与数据结构算法c++ACM数据结构
算法总结文章目录算法总结搜索遍历dfs树的深度树的重心图的连通块划分bfs双端队列bfsbfs图问题迭代加深双向搜索A*IDA*Morris遍历Manacher数论质数判断质数分解质因数埃氏筛法线性筛法约数求N的正约数集合——试除法求1~N每个数的正约数集合——倍除法欧拉函数快速幂快速幂求逆元扩展欧几里得算法斐蜀定理扩展欧几里得算法线性同余方程中国剩余定理卡特兰数低阶数据结构链表邻接表AVL树单调
- Catalan(卡特兰)数
丶lemon7
数据结构
二叉搜索树概念:介绍卡特兰数之前先来了解一些二叉搜索树的概念。比如有一棵树,它根节点比左边节点要大,比右边节点要小,这样的树就称为二叉搜索树。如下图所示:卡特兰数:我们把n个节点所能组成的不同二叉搜索树的个数称为卡特兰数(Catalan数)。接下来我们来看一下不同的卡特兰数是怎么计算出来的。卡特兰数分析:我们把C(n)记为卡特兰数,当节点数为1时,只能组成一种二叉搜索树,因此C(1)=1。C(2)
- AcWing 889. 满足条件的01序列(卡特兰数应用)
ˇasushiro
AcWing算法笔记
满足条件的01序列假设长度为n个序列要求满足题意1的前缀0的个数不能超过1的个数将问题抽象为从(0,0)到(n,n)向上走一个代表这一步对应序列中的值是1,向右走代表序列中的值是0要想满足1的前缀0的数量大于1的数量就需要满足所有路过的途径在y=x这个函数个下面但是如何表达呢?我们采用所有到(n,n)的方案的集合减去越过y=x+1这个直线的方案集合因为越过y=x+1这个直线的方案集合可以表示为从(
- 栈出栈序列问题的探究与思考(卡特兰数)
Pigwantofly
基本算法数据结构与算法算法c++数据结构
目录一、引入二、朴素算法三、卡特兰数的介绍四、卡特兰数的实现1.递推实现卡特兰数2.组合数法实现卡特兰数五、结语一、引入初学数据结构与算法,学到栈的时候,总是会遇到这样一类问题,设输入序列为1,2,3,则经过栈的作用后可以得到()中不同的输出序列。接着就开始一直在想,谁入栈,谁出栈,数字少还好,但数字一多起来,我就开始出现遗漏和重复,所以我只想有没有一种方法,或是说一种公式,可以让我在计算诸如此类
- C++混合笔记
ltl1
笔记c++笔记算法
目录先上一波最短路模板:Dijkstra朴素:(链式前向星)Dijkstra堆优化:(链式前向星)SPFA:Bellman_ford1:Trie2.并查集组合数原公式:组合数公式:编辑逆元预处理来求:在编辑可用代码:组合数卢卡斯定理:代码:卡特兰数:编辑01背包转移方程:01背包注意事项:01背包代码:01背包空间优化版(滚动数组):时间复杂度:编辑完全背包转移方程:完全背包变量意思:完全背包朴素
- 求组合数的四种方法以及卡特兰数
2301_78981471
算法学习记录算法笔记c++
文章目录组合数范围较小&&模量一定方法-递推法思路时间复杂度分析AcWing885.求组合数ICODE组合数范围较大&&模量一定方法-快速幂时间复杂度分析AcWing886.求组合数IICODE组合数范围爆大&&模量不定方法-Lucas定理时间复杂度分析AcWing887.求组合数IIICODE组合数范围爆大&&没有模量方法-线性筛+高精度时间复杂度分析AcWing888.求组合数IVCODE卡特
- 洛谷P1722 矩阵Ⅱ——卡特兰数
louisdlee.
洛谷深入浅出进阶篇c++组合数学
传送门:P1722矩阵II-洛谷|计算机科学教育新生态(luogu.com.cn)https://www.luogu.com.cn/problem/P1722用不需要除任何数的公式来求。#define_CRT_SECURE_NO_WARNINGS#include#include#include#include#include#include#include#include#include#incl
- 组合数学(四种求组合数的方法:递推,逆元,lucas,卡特兰数)
clmm_
算法
求组合数,对于不同的数据量可以用不同的方法。实际上只用记住最高效的那个方法即可。本文将介绍四种求组合数的办法递推求组合数我们需要知道一个递推式。怎么记忆呢?假如我们要求从a个苹果里选b个苹果,我们可以分成两种情况1.包含a个苹果里的苹果i(ai),那么就是,因为已经选了ai,再选b-1个苹果即可2.不包含ai,就是,需要在剩下的a-1个苹果里选b个苹果用递推式预处理,时间复杂度就大大降低了时间复杂
- lc.96 不同的搜索二叉树 卡特兰数
对特别对
我与力扣斗智斗勇leetcodejava动态规划
lc.96不同的搜索二叉树题目描述正解题目描述来源:leetcode_hot100_96给你一个整数n,求恰由n个节点组成且节点值从1到n互不相同的二叉搜索树有多少种?返回满足题意的二叉搜索树的种数。正解思路:卡特兰数要算G(n)就需要G(0)~G(n-1)所有的值,for(inti=2;i<=n;i++)存在的意义是为了G(i)模拟算出G(0)到G(n-1)所有的值for(intj=1;j<=i
- 【算法专题】卡特兰数
你好世界wxx
算法专题卡特兰数组合数
卡特兰数1.概述卡特兰数:首先这个一个数,很多问题的结果都是卡特兰数,比如2016年全国三卷数学选择题压轴题让求解的就是卡特兰数,问题如下:首先是结论:卡特兰数为:C2nnn+1\frac{C_{2n}^n}{n+1}n+1C2nn因此,对于上面的题目,结果就是C2mmm+1=C844+1=705=14\frac{C_{2m}^m}{m+1}=\frac{C_8^4}{4+1}=\frac{70}
- AcWing算法基础课----数学知识(三) 笔记 ( 高斯消元 + 求组合数 )
彡倾灬染|
算法学习笔记AcWingc++c语言
数学知识高斯消元O(n^3)求组合数1.递归法求组合数2.Lucas定理3.分解质因数法求组合数卡特兰数高斯消元O(n^3)解方程:无解\无穷多解\有唯一解利用线性代数初等行列变换1.把某一行乘一个非零的数2.交换某两行3.把某行若干倍加到另一行上去变换之后结果与解的关系:1.完美阶梯型唯一解2.不完美阶梯型0=非零无解3.不完美阶梯型0=0无穷解浮点数判断是否为零需要和eps比算法步骤:枚举每一
- jsonp 常用util方法
hw1287789687
jsonpjsonp常用方法jsonp callback
jsonp 常用java方法
(1)以jsonp的形式返回:函数名(json字符串)
/***
* 用于jsonp调用
* @param map : 用于构造json数据
* @param callback : 回调的javascript方法名
* @param filters : <code>SimpleBeanPropertyFilter theFilt
- 多线程场景
alafqq
多线程
0
能不能简单描述一下你在java web开发中需要用到多线程编程的场景?0
对多线程有些了解,但是不太清楚具体的应用场景,能简单说一下你遇到的多线程编程的场景吗?
Java多线程
2012年11月23日 15:41 Young9007 Young9007
4
0 0 4
Comment添加评论关注(2)
3个答案 按时间排序 按投票排序
0
0
最典型的如:
1、
- Maven学习——修改Maven的本地仓库路径
Kai_Ge
maven
安装Maven后我们会在用户目录下发现.m2 文件夹。默认情况下,该文件夹下放置了Maven本地仓库.m2/repository。所有的Maven构件(artifact)都被存储到该仓库中,以方便重用。但是windows用户的操作系统都安装在C盘,把Maven仓库放到C盘是很危险的,为此我们需要修改Maven的本地仓库路径。
- placeholder的浏览器兼容
120153216
placeholder
【前言】
自从html5引入placeholder后,问题就来了,
不支持html5的浏览器也先有这样的效果,
各种兼容,之前考虑,今天测试人员逮住不放,
想了个解决办法,看样子还行,记录一下。
【原理】
不使用placeholder,而是模拟placeholder的效果,
大概就是用focus和focusout效果。
【代码】
<scrip
- debian_用iso文件创建本地apt源
2002wmj
Debian
1.将N个debian-506-amd64-DVD-N.iso存放于本地或其他媒介内,本例是放在本机/iso/目录下
2.创建N个挂载点目录
如下:
debian:~#mkdir –r /media/dvd1
debian:~#mkdir –r /media/dvd2
debian:~#mkdir –r /media/dvd3
….
debian:~#mkdir –r /media
- SQLSERVER耗时最长的SQL
357029540
SQL Server
对于DBA来说,经常要知道存储过程的某些信息:
1. 执行了多少次
2. 执行的执行计划如何
3. 执行的平均读写如何
4. 执行平均需要多少时间
列名 &
- com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil
7454103
eclipse
今天eclipse突然报了com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil 错误,并且工程文件打不开了,在网上找了一下资料,然后按照方法操作了一遍,好了,解决方法如下:
错误提示信息:
An error has occurred.See error log for more details.
Reason:
com/genuitec/
- 用正则删除文本中的html标签
adminjun
javahtml正则表达式去掉html标签
使用文本编辑器录入文章存入数据中的文本是HTML标签格式,由于业务需要对HTML标签进行去除只保留纯净的文本内容,于是乎Java实现自动过滤。
如下:
public static String Html2Text(String inputString) {
String htmlStr = inputString; // 含html标签的字符串
String textSt
- 嵌入式系统设计中常用总线和接口
aijuans
linux 基础
嵌入式系统设计中常用总线和接口
任何一个微处理器都要与一定数量的部件和外围设备连接,但如果将各部件和每一种外围设备都分别用一组线路与CPU直接连接,那么连线
- Java函数调用方式——按值传递
ayaoxinchao
java按值传递对象基础数据类型
Java使用按值传递的函数调用方式,这往往使我感到迷惑。因为在基础数据类型和对象的传递上,我就会纠结于到底是按值传递,还是按引用传递。其实经过学习,Java在任何地方,都一直发挥着按值传递的本色。
首先,让我们看一看基础数据类型是如何按值传递的。
public static void main(String[] args) {
int a = 2;
- ios音量线性下降
bewithme
ios音量
直接上代码吧
//second 几秒内下降为0
- (void)reduceVolume:(int)second {
KGVoicePlayer *player = [KGVoicePlayer defaultPlayer];
if (!_flag) {
_tempVolume = player.volume;
- 与其怨它不如爱它
bijian1013
选择理想职业规划
抱怨工作是年轻人的常态,但爱工作才是积极的心态,与其怨它不如爱它。
一般来说,在公司干了一两年后,不少年轻人容易产生怨言,除了具体的埋怨公司“扭门”,埋怨上司无能以外,也有许多人是因为根本不爱自已的那份工作,工作完全成了谋生的手段,跟自已的性格、专业、爱好都相差甚远。
- 一边时间不够用一边浪费时间
bingyingao
工作时间浪费
一方面感觉时间严重不够用,另一方面又在不停的浪费时间。
每一个周末,晚上熬夜看电影到凌晨一点,早上起不来一直睡到10点钟,10点钟起床,吃饭后玩手机到下午一点。
精神还是很差,下午像一直野鬼在城市里晃荡。
为何不尝试晚上10点钟就睡,早上7点就起,时间完全是一样的,把看电影的时间换到早上,精神好,气色好,一天好状态。
控制让自己周末早睡早起,你就成功了一半。
有多少个工作
- 【Scala八】Scala核心二:隐式转换
bit1129
scala
Implicits work like this: if you call a method on a Scala object, and the Scala compiler does not see a definition for that method in the class definition for that object, the compiler will try to con
- sudoku slover in Haskell (2)
bookjovi
haskellsudoku
继续精简haskell版的sudoku程序,稍微改了一下,这次用了8行,同时性能也提高了很多,对每个空格的所有解不是通过尝试算出来的,而是直接得出。
board = [0,3,4,1,7,0,5,0,0,
0,6,0,0,0,8,3,0,1,
7,0,0,3,0,0,0,0,6,
5,0,0,6,4,0,8,0,7,
- Java-Collections Framework学习与总结-HashSet和LinkedHashSet
BrokenDreams
linkedhashset
本篇总结一下两个常用的集合类HashSet和LinkedHashSet。
它们都实现了相同接口java.util.Set。Set表示一种元素无序且不可重复的集合;之前总结过的java.util.List表示一种元素可重复且有序
- 读《研磨设计模式》-代码笔记-备忘录模式-Memento
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
/*
* 备忘录模式的功能是,在不破坏封装性的前提下,捕获一个对象的内部状态,并在对象之外保存这个状态,为以后的状态恢复作“备忘”
- 《RAW格式照片处理专业技法》笔记
cherishLC
PS
注意,这不是教程!仅记录楼主之前不太了解的
一、色彩(空间)管理
作者建议采用ProRGB(色域最广),但camera raw中设为ProRGB,而PS中则在ProRGB的基础上,将gamma值设为了1.8(更符合人眼)
注意:bridge、camera raw怎么设置显示、输出的颜色都是正确的(会读取文件内的颜色配置文件),但用PS输出jpg文件时,必须先用Edit->conv
- 使用 Git 下载 Spring 源码 编译 for Eclipse
crabdave
eclipse
使用 Git 下载 Spring 源码 编译 for Eclipse
1、安装gradle,下载 http://www.gradle.org/downloads
配置环境变量GRADLE_HOME,配置PATH %GRADLE_HOME%/bin,cmd,gradle -v
2、spring4 用jdk8 下载 https://jdk8.java.
- mysql连接拒绝问题
daizj
mysql登录权限
mysql中在其它机器连接mysql服务器时报错问题汇总
一、[running]
[email protected]:~$mysql -uroot -h 192.168.9.108 -p //带-p参数,在下一步进行密码输入
Enter password: //无字符串输入
ERROR 1045 (28000): Access
- Google Chrome 为何打压 H.264
dsjt
applehtml5chromeGoogle
Google 今天在 Chromium 官方博客宣布由于 H.264 编解码器并非开放标准,Chrome 将在几个月后正式停止对 H.264 视频解码的支持,全面采用开放的 WebM 和 Theora 格式。
Google 在博客上表示,自从 WebM 视频编解码器推出以后,在性能、厂商支持以及独立性方面已经取得了很大的进步,为了与 Chromium 现有支持的編解码器保持一致,Chrome
- yii 获取控制器名 和方法名
dcj3sjt126com
yiiframework
1. 获取控制器名
在控制器中获取控制器名: $name = $this->getId();
在视图中获取控制器名: $name = Yii::app()->controller->id;
2. 获取动作名
在控制器beforeAction()回调函数中获取动作名: $name =
- Android知识总结(二)
come_for_dream
android
明天要考试了,速速总结如下
1、Activity的启动模式
standard:每次调用Activity的时候都创建一个(可以有多个相同的实例,也允许多个相同Activity叠加。)
singleTop:可以有多个实例,但是不允许多个相同Activity叠加。即,如果Ac
- 高洛峰收徒第二期:寻找未来的“技术大牛” ——折腾一年,奖励20万元
gcq511120594
工作项目管理
高洛峰,兄弟连IT教育合伙人、猿代码创始人、PHP培训第一人、《细说PHP》作者、软件开发工程师、《IT峰播》主创人、PHP讲师的鼻祖!
首期现在的进程刚刚过半,徒弟们真的很棒,人品都没的说,团结互助,学习刻苦,工作认真积极,灵活上进。我几乎会把他们全部留下来,现在已有一多半安排了实际的工作,并取得了很好的成绩。等他们出徒之日,凭他们的能力一定能够拿到高薪,而且我还承诺过一个徒弟,当他拿到大学毕
- linux expect
heipark
expect
1. 创建、编辑文件go.sh
#!/usr/bin/expect
spawn sudo su admin
expect "*password*" { send "13456\r\n" }
interact
2. 设置权限
chmod u+x go.sh 3.
- Spring4.1新特性——静态资源处理增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- idea ubuntuxia 乱码
liyonghui160com
1.首先需要在windows字体目录下或者其它地方找到simsun.ttf 这个 字体文件。
2.在ubuntu 下可以执行下面操作安装该字体:
sudo mkdir /usr/share/fonts/truetype/simsun
sudo cp simsun.ttf /usr/share/fonts/truetype/simsun
fc-cache -f -v
- 改良程序的11技巧
pda158
技巧
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。
让我们看一些基本的编程技巧:
尽量保持方法简短
永远永远不要把同一个变量用于多个不同的
- 300个涵盖IT各方面的免费资源(下)——工作与学习篇
shoothao
创业免费资源学习课程远程工作
工作与生产效率:
A. 背景声音
Noisli:背景噪音与颜色生成器。
Noizio:环境声均衡器。
Defonic:世界上任何的声响都可混合成美丽的旋律。
Designers.mx:设计者为设计者所准备的播放列表。
Coffitivity:这里的声音就像咖啡馆里放的一样。
B. 避免注意力分散
Self Co
- 深入浅出RPC
uule
rpc
深入浅出RPC-浅出篇
深入浅出RPC-深入篇
RPC
Remote Procedure Call Protocol
远程过程调用协议
它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发