摘自: Flink从0到1学习 – Flink配置文件详解
官网介绍: https://ci.apache.org/projects/flink/flink-docs-stable/ops/config.html
安装目录下主要有 flink-conf.yaml 配置、日志的配置文件、zk 配置、Flink SQL Client 配置。
# jobManager 的IP地址
jobmanager.rpc.address: localhost
# JobManager 的端口号
jobmanager.rpc.port: 6123
# JobManager JVM heap 内存大小
jobmanager.heap.size: 1024m
# TaskManager JVM heap 内存大小
taskmanager.heap.size: 1024m
# 每个 TaskManager 提供的任务 slots 数量大小
taskmanager.numberOfTaskSlots: 1
# 程序默认并行计算的个数
parallelism.default: 1
# 文件系统来源
# fs.default-scheme
# 可以选择 'NONE' 或者 'zookeeper'.
# high-availability: zookeeper
# 文件系统路径,让 Flink 在高可用性设置中持久保存元数据
# high-availability.storageDir: hdfs:///flink/ha/
# zookeeper 集群中仲裁者的机器 ip 和 port 端口号
# high-availability.zookeeper.quorum: localhost:2181
# 默认是 open,如果 zookeeper security 启用了该值会更改成 creator
# high-availability.zookeeper.client.acl: open
# 用于存储和检查点状态
# state.backend: filesystem
# 存储检查点的数据文件和元数据的默认目录
# state.checkpoints.dir: hdfs://namenode-host:port/flink-checkpoints
# savepoints 的默认目标目录(可选)
# state.savepoints.dir: hdfs://namenode-host:port/flink-checkpoints
# 用于启用/禁用增量 checkpoints 的标志
# state.backend.incremental: false
# 基于 Web 的运行时监视器侦听的地址.
#jobmanager.web.address: 0.0.0.0
# Web 的运行时监视器端口
rest.port: 8081
# 是否从基于 Web 的 jobmanager 启用作业提交
# jobmanager.web.submit.enable: false
# io.tmp.dirs: /tmp
# 是否应在 TaskManager 启动时预先分配 TaskManager 管理的内存
# taskmanager.memory.preallocate: false
# 类加载解析顺序,是先检查用户代码 jar(“child-first”)还是应用程序类路径(“parent-first”)。 默认设置指示首先从用户代码 jar 加载类
# classloader.resolve-order: child-first
# 用于网络缓冲区的 JVM 内存的分数。 这决定了 TaskManager 可以同时拥有多少流数据交换通道以及通道缓冲的程度。 如果作业被拒绝或者您收到系统没有足够缓冲区的警告,请增加此值或下面的最小/最大值。 另请注意,“taskmanager.network.memory.min”和“taskmanager.network.memory.max”可能会覆盖此分数
# taskmanager.network.memory.fraction: 0.1
# taskmanager.network.memory.min: 67108864
# taskmanager.network.memory.max: 1073741824
# 指示是否从 Kerberos ticket 缓存中读取
# security.kerberos.login.use-ticket-cache: true
# 包含用户凭据的 Kerberos 密钥表文件的绝对路径
# security.kerberos.login.keytab: /path/to/kerberos/keytab
# 与 keytab 关联的 Kerberos 主体名称
# security.kerberos.login.principal: flink-user
# 以逗号分隔的登录上下文列表,用于提供 Kerberos 凭据(例如,`Client,KafkaClient`使用凭证进行 ZooKeeper 身份验证和 Kafka 身份验证)
# security.kerberos.login.contexts: Client,KafkaClient
# 覆盖以下配置以提供自定义 ZK 服务名称
# zookeeper.sasl.service-name: zookeeper
# 该配置必须匹配 "security.kerberos.login.contexts" 中的列表(含有一个)
# zookeeper.sasl.login-context-name: Client
# 你可以通过 bin/historyserver.sh (start|stop) 命令启动和关闭 HistoryServer
# 将已完成的作业上传到的目录
# jobmanager.archive.fs.dir: hdfs:///completed-jobs/
# 基于 Web 的 HistoryServer 的地址
# historyserver.web.address: 0.0.0.0
# 基于 Web 的 HistoryServer 的端口号
# historyserver.web.port: 8082
# 以逗号分隔的目录列表,用于监视已完成的作业
# historyserver.archive.fs.dir: hdfs:///completed-jobs/
# 刷新受监控目录的时间间隔(以毫秒为单位)
# historyserver.archive.fs.refresh-interval: 10000
host:port
localhost:8081
每个worker节点的IP/Hostname
localhost
# 每个 tick 的毫秒数
tickTime=2000
# 初始同步阶段可以采用的 tick 数
initLimit=10
# 在发送请求和获取确认之间可以传递的 tick 数
syncLimit=5
# 存储快照的目录
# dataDir=/tmp/zookeeper
# 客户端将连接的端口
clientPort=2181
# ZooKeeper quorum peers
server.1=localhost:2888:3888
# server.2=host:peer-port:leader-port
Flink 在不同平台下运行的日志文件
log4j-cli.properties
log4j-console.properties
log4j-yarn-session.properties
log4j.properties
logback-console.xml
logback-yarn.xml
logback.xml
execution:
# 'batch' or 'streaming' execution
type: streaming
# allow 'event-time' or only 'processing-time' in sources
time-characteristic: event-time
# interval in ms for emitting periodic watermarks
periodic-watermarks-interval: 200
# 'changelog' or 'table' presentation of results
result-mode: changelog
# parallelism of the program
parallelism: 1
# maximum parallelism
max-parallelism: 128
# minimum idle state retention in ms
min-idle-state-retention: 0
# maximum idle state retention in ms
max-idle-state-retention: 0
deployment:
# general cluster communication timeout in ms
response-timeout: 5000
# (optional) address from cluster to gateway
gateway-address: ""
# (optional) port from cluster to gateway
gateway-port: 0
执行 flink run 后参数:
参数说明
Action "run" compiles and runs a program.
Syntax: run [OPTIONS]
"run" action options:
-c,--class Class with the program entry
point ("main" method or
"getPlan()" method. Only
needed if the JAR file does
not specify the class in its
manifest.
-C,--classpath Adds a URL to each user code
classloader on all nodes in
the cluster. The paths must
specify a protocol (e.g.
file://) and be accessible
on all nodes (e.g. by means
of a NFS share). You can use
this option multiple times
for specifying more than one
URL. The protocol must be
supported by the {@link
java.net.URLClassLoader}.
-d,--detached If present, runs the job in
detached mode
-m,--jobmanager Address of the JobManager
(master) to which to
connect. Use this flag to
connect to a different
JobManager than the one
specified in the
configuration.
-p,--parallelism The parallelism with which
to run the program. Optional
flag to override the default
value specified in the
configuration.
-q,--sysoutLogging If present, suppress logging
output to standard out.
-s,--fromSavepoint Path to a savepoint to reset
the job back to (for example
file:///flink/savepoint-1537
).
-z,--zookeeperNamespace Namespace to create the
Zookeeper sub-paths for high
availability mode
Options for yarn-cluster mode:
-yD Dynamic properties
-yd,--yarndetached Start detached
-yid,--yarnapplicationId Attach to running YARN session
-yj,--yarnjar Path to Flink jar file
-yjm,--yarnjobManagerMemory Memory for JobManager Container [in
MB]
-yn,--yarncontainer Number of YARN container to allocate
(=Number of Task Managers)
-ynm,--yarnname Set a custom name for the application
on YARN
-yq,--yarnquery Display available YARN resources
(memory, cores)
-yqu,--yarnqueue Specify YARN queue.
-ys,--yarnslots Number of slots per TaskManager
-yst,--yarnstreaming Start Flink in streaming mode
-yt,--yarnship Ship files in the specified directory
(t for transfer)
-ytm,--yarntaskManagerMemory Memory per TaskManager Container [in
MB]
-yz,--yarnzookeeperNamespace Namespace to create the Zookeeper
sub-paths for high availability mode
-n 10 一共启动10个TaskManager节点
-jm 1024 JobManager的内存大小为1024M
-tm 2048 TaskManager的内存大小为2048M
-d 使用detached模式进行部署(部署完成后本地命令行可以退出)
-qu default 部署到YARN的default队列中