树-堆结构练习——合并果子之哈夫曼树

树-堆结构练习——合并果子之哈夫曼树
Time Limit: 1000 ms Memory Limit: 65536 KiB
Submit Statistic Discuss
Problem Description

在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所消耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。

Input

第一行是一个整数n(1<=n<=10000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个ai(1<=ai<=20000)是第i个果子的数目。

Output

输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^31。

Sample Input

3
1 2 9
Sample Output

15
Hint

Source

赵利强

#include
#include
using namespace std;
int main()
{
    int n,t,i;
    int sum,last;
    while(~scanf("%d",&n))
    {
        sum=0;
        priority_queue<int,vector<int>,greater<int> >p;//从小到大排序,从大到小是priority_queueq;
        for(i=0;iscanf("%d",&t);
            p.push(t);
        }
        while(!p.empty())
        {
            last=p.top();
            p.pop();
            if(p.empty())
                break;
            else
            {
                t=p.top();//优先队列里是top
                p.pop();
                last+=t;
                p.push(last);
                sum+=last;
            }
        }
        printf("%d\n",sum);
    }
    return 0;
}

优先队列模拟树,优先队列使用
http://blog.csdn.net/qq_36525906/article/details/77161390

你可能感兴趣的:(数据结构--树)