ORB_SLAM2主要都是进行图优化,把关键帧的位姿和路标点的坐标设为图的顶点,如果在对应关键帧中有观测到该路标点则产生一条边,这就是共视图的定义。然后Essential graph则还要对权重也就是观测到的路标点进行设定,文中是100。
当中还利用卡方分布判断是内点还是外点,对外点进行删除。
关于求解对应SE(3)的雅各比矩阵可以在g2o/types里面都已经定义好了,所以可以直接进行优化。
#ifndef OPTIMIZER_H
#define OPTIMIZER_H
#include "Map.h"
#include "MapPoint.h"
#include "KeyFrame.h"
#include "LoopClosing.h"
#include "Frame.h"
#include "Thirdparty/g2o/g2o/types/types_seven_dof_expmap.h"
namespace ORB_SLAM2
{
class LoopClosing;
class Optimizer
{
public:
//进行BA
void static BundleAdjustment(const std::vector &vpKF, const std::vector &vpMP,
int nIterations = 5, bool *pbStopFlag=NULL, const unsigned long nLoopKF=0,
const bool bRobust = true);
//进行全局BA
void static GlobalBundleAdjustemnt(Map* pMap, int nIterations=5, bool *pbStopFlag=NULL,
const unsigned long nLoopKF=0, const bool bRobust = true);
//局部BA
void static LocalBundleAdjustment(KeyFrame* pKF, bool *pbStopFlag, Map *pMap);
//对POSE进行优化
int static PoseOptimization(Frame* pFrame);
// if bFixScale is true, 6DoF optimization (stereo,rgbd), 7DoF otherwise (mono)
//优化本质图,双目和深度只有六个自由度,单目有七个自由度,多一个尺度
void static OptimizeEssentialGraph(Map* pMap, KeyFrame* pLoopKF, KeyFrame* pCurKF,
const LoopClosing::KeyFrameAndPose &NonCorrectedSim3,
const LoopClosing::KeyFrameAndPose &CorrectedSim3,
const mapset > &LoopConnections,
const bool &bFixScale);
// if bFixScale is true, optimize SE3 (stereo,rgbd), Sim3 otherwise (mono)
static int OptimizeSim3(KeyFrame* pKF1, KeyFrame* pKF2, std::vector &vpMatches1,
g2o::Sim3 &g2oS12, const float th2, const bool bFixScale);
};
} //namespace ORB_SLAM
#endif // OPTIMIZER_H
#include "Optimizer.h"
#include "Thirdparty/g2o/g2o/core/block_solver.h"
#include "Thirdparty/g2o/g2o/core/optimization_algorithm_levenberg.h"
#include "Thirdparty/g2o/g2o/solvers/linear_solver_eigen.h"
#include "Thirdparty/g2o/g2o/types/types_six_dof_expmap.h"
#include "Thirdparty/g2o/g2o/core/robust_kernel_impl.h"
#include "Thirdparty/g2o/g2o/solvers/linear_solver_dense.h"
#include "Thirdparty/g2o/g2o/types/types_seven_dof_expmap.h"
#include
#include "Converter.h"
#include
namespace ORB_SLAM2
{
void Optimizer::GlobalBundleAdjustemnt(Map* pMap, int nIterations, bool* pbStopFlag, const unsigned long nLoopKF, const bool bRobust)
{
vector vpKFs = pMap->GetAllKeyFrames();
vector vpMP = pMap->GetAllMapPoints();
BundleAdjustment(vpKFs,vpMP,nIterations,pbStopFlag, nLoopKF, bRobust);
}
void Optimizer::BundleAdjustment(const vector &vpKFs, const vector &vpMP,
int nIterations, bool* pbStopFlag, const unsigned long nLoopKF, const bool bRobust)
{
vector<bool> vbNotIncludedMP;
vbNotIncludedMP.resize(vpMP.size());
g2o::SparseOptimizer optimizer;
g2o::BlockSolver_6_3::LinearSolverType * linearSolver;
//定义一个线性方程求解器
linearSolver = new g2o::LinearSolverEigen();
//稀疏矩阵块求解器
g2o::BlockSolver_6_3 * solver_ptr = new g2o::BlockSolver_6_3(linearSolver);
//定义使用LM算法进行求解
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
optimizer.setAlgorithm(solver);
if(pbStopFlag)
optimizer.setForceStopFlag(pbStopFlag);
long unsigned int maxKFid = 0;
// Set KeyFrame vertices
//设置关键帧顶点
for(size_t i=0; iif(pKF->isBad())
continue;
//SE(3)位姿
g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
vSE3->setEstimate(Converter::toSE3Quat(pKF->GetPose()));
vSE3->setId(pKF->mnId);
vSE3->setFixed(pKF->mnId==0);
optimizer.addVertex(vSE3);
if(pKF->mnId>maxKFid)
maxKFid=pKF->mnId;
}
//5.991,7.815是按照卡方分布不同自由度设置的阈值
const float thHuber2D = sqrt(5.99);
const float thHuber3D = sqrt(7.815);
// Set MapPoint vertices
//设置地图点顶点
for(size_t i=0; iif(pMP->isBad())
continue;
//存储地图点坐标
g2o::VertexSBAPointXYZ* vPoint = new g2o::VertexSBAPointXYZ();
vPoint->setEstimate(Converter::toVector3d(pMP->GetWorldPos()));
//id是继续之前关键帧之后继续增加的
const int id = pMP->mnId+maxKFid+1;
vPoint->setId(id);
vPoint->setMarginalized(true);
optimizer.addVertex(vPoint);
const map observations = pMP->GetObservations();
int nEdges = 0;
//SET EDGES
for(map ::const_iterator mit=observations.begin(); mit!=observations.end(); mit++)
{
KeyFrame* pKF = mit->first;
if(pKF->isBad() || pKF->mnId>maxKFid)
continue;
nEdges++;
const cv::KeyPoint &kpUn = pKF->mvKeysUn[mit->second];
//判断是是否为单目
if(pKF->mvuRight[mit->second]<0)
{
Eigen::Matrix<double,2,1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
//BA中的重投影误差,将地图点投影到相机坐标系下的相机平面。
//地图点位置固定,是二元边
g2o::EdgeSE3ProjectXYZ* e = new g2o::EdgeSE3ProjectXYZ();
e->setVertex(0, dynamic_cast(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast(optimizer.vertex(pKF->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKF->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
//添加核函数
if(bRobust)
{
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuber2D);
}
e->fx = pKF->fx;
e->fy = pKF->fy;
e->cx = pKF->cx;
e->cy = pKF->cy;
optimizer.addEdge(e);
}
//如果是双目的情况
else
{
Eigen::Matrix<double,3,1> obs;
const float kp_ur = pKF->mvuRight[mit->second];
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
g2o::EdgeStereoSE3ProjectXYZ* e = new g2o::EdgeStereoSE3ProjectXYZ();
e->setVertex(0, dynamic_cast(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast(optimizer.vertex(pKF->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKF->mvInvLevelSigma2[kpUn.octave];
Eigen::Matrix3d Info = Eigen::Matrix3d::Identity()*invSigma2;
e->setInformation(Info);
if(bRobust)
{
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuber3D);
}
e->fx = pKF->fx;
e->fy = pKF->fy;
e->cx = pKF->cx;
e->cy = pKF->cy;
e->bf = pKF->mbf;
optimizer.addEdge(e);
}
}
//如果没有添加到边,则删除对应顶点
if(nEdges==0)
{
optimizer.removeVertex(vPoint);
vbNotIncludedMP[i]=true;
}
else
{
vbNotIncludedMP[i]=false;
}
}
// Optimize!
optimizer.initializeOptimization();
optimizer.optimize(nIterations);
// Recover optimized data
//Keyframes
//得到优化后的Keyframes的pose
for(size_t i=0; iif(pKF->isBad())
continue;
g2o::VertexSE3Expmap* vSE3 = static_cast(optimizer.vertex(pKF->mnId));
g2o::SE3Quat SE3quat = vSE3->estimate();
if(nLoopKF==0)
{
pKF->SetPose(Converter::toCvMat(SE3quat));
}
else
{
pKF->mTcwGBA.create(4,4,CV_32F);
Converter::toCvMat(SE3quat).copyTo(pKF->mTcwGBA);
pKF->mnBAGlobalForKF = nLoopKF;
}
}
//Points
//得到路标点优化后的坐标
for(size_t i=0; iif(vbNotIncludedMP[i])
continue;
MapPoint* pMP = vpMP[i];
if(pMP->isBad())
continue;
g2o::VertexSBAPointXYZ* vPoint = static_cast(optimizer.vertex(pMP->mnId+maxKFid+1));
if(nLoopKF==0)
{
pMP->SetWorldPos(Converter::toCvMat(vPoint->estimate()));
pMP->UpdateNormalAndDepth();
}
else
{
pMP->mPosGBA.create(3,1,CV_32F);
Converter::toCvMat(vPoint->estimate()).copyTo(pMP->mPosGBA);
pMP->mnBAGlobalForKF = nLoopKF;
}
}
}
//只优化当前帧的pose,地图点固定
//用于LocalTracking中运动模型跟踪,参考帧跟踪,地图跟踪TrackLocalMap,重定位
int Optimizer::PoseOptimization(Frame *pFrame)
{
g2o::SparseOptimizer optimizer;
g2o::BlockSolver_6_3::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverDense();
g2o::BlockSolver_6_3 * solver_ptr = new g2o::BlockSolver_6_3(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
optimizer.setAlgorithm(solver);
int nInitialCorrespondences=0;
// Set Frame vertex
g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
vSE3->setEstimate(Converter::toSE3Quat(pFrame->mTcw));
vSE3->setId(0);
vSE3->setFixed(false);
optimizer.addVertex(vSE3);
// Set MapPoint vertices
const int N = pFrame->N;
vector vpEdgesMono;
vector vnIndexEdgeMono;
vpEdgesMono.reserve(N);
vnIndexEdgeMono.reserve(N);
vector vpEdgesStereo;
vector vnIndexEdgeStereo;
vpEdgesStereo.reserve(N);
vnIndexEdgeStereo.reserve(N);
const float deltaMono = sqrt(5.991);
const float deltaStereo = sqrt(7.815);
{
unique_lock lock(MapPoint::mGlobalMutex);
for(int i=0; imvpMapPoints[i];
if(pMP)
{
// Monocular observation
if(pFrame->mvuRight[i]<0)
{
nInitialCorrespondences++;
pFrame->mvbOutlier[i] = false;
Eigen::Matrix<double,2,1> obs;
const cv::KeyPoint &kpUn = pFrame->mvKeysUn[i];
obs << kpUn.pt.x, kpUn.pt.y;
//一元边
g2o::EdgeSE3ProjectXYZOnlyPose* e = new g2o::EdgeSE3ProjectXYZOnlyPose();
e->setVertex(0, dynamic_cast(optimizer.vertex(0)));
e->setMeasurement(obs);
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(deltaMono);
e->fx = pFrame->fx;
e->fy = pFrame->fy;
e->cx = pFrame->cx;
e->cy = pFrame->cy;
cv::Mat Xw = pMP->GetWorldPos();
e->Xw[0] = Xw.at<float>(0);
e->Xw[1] = Xw.at<float>(1);
e->Xw[2] = Xw.at<float>(2);
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vnIndexEdgeMono.push_back(i);
}
else // Stereo observation
{
nInitialCorrespondences++;
pFrame->mvbOutlier[i] = false;
//SET EDGE
Eigen::Matrix<double,3,1> obs;
const cv::KeyPoint &kpUn = pFrame->mvKeysUn[i];
const float &kp_ur = pFrame->mvuRight[i];
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
g2o::EdgeStereoSE3ProjectXYZOnlyPose* e = new g2o::EdgeStereoSE3ProjectXYZOnlyPose();
e->setVertex(0, dynamic_cast(optimizer.vertex(0)));
e->setMeasurement(obs);
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave];
Eigen::Matrix3d Info = Eigen::Matrix3d::Identity()*invSigma2;
e->setInformation(Info);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(deltaStereo);
e->fx = pFrame->fx;
e->fy = pFrame->fy;
e->cx = pFrame->cx;
e->cy = pFrame->cy;
e->bf = pFrame->mbf;
cv::Mat Xw = pMP->GetWorldPos();
e->Xw[0] = Xw.at<float>(0);
e->Xw[1] = Xw.at<float>(1);
e->Xw[2] = Xw.at<float>(2);
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vnIndexEdgeStereo.push_back(i);
}
}
}
}
if(nInitialCorrespondences<3)
return 0;
// We perform 4 optimizations, after each optimization we classify observation as inlier/outlier
// At the next optimization, outliers are not included, but at the end they can be classified as inliers again.
const float chi2Mono[4]={5.991,5.991,5.991,5.991};
const float chi2Stereo[4]={7.815,7.815,7.815, 7.815};
const int its[4]={10,10,10,10};
int nBad=0;
for(size_t it=0; it<4; it++)
{
vSE3->setEstimate(Converter::toSE3Quat(pFrame->mTcw));
optimizer.initializeOptimization(0);
optimizer.optimize(its[it]);
nBad=0;
for(size_t i=0, iend=vpEdgesMono.size(); iconst size_t idx = vnIndexEdgeMono[i];
if(pFrame->mvbOutlier[idx])
{
e->computeError();
}
const float chi2 = e->chi2();
if(chi2>chi2Mono[it])
{
pFrame->mvbOutlier[idx]=true;
e->setLevel(1);
nBad++;
}
else
{
pFrame->mvbOutlier[idx]=false;
e->setLevel(0);
}
if(it==2)
e->setRobustKernel(0);
}
for(size_t i=0, iend=vpEdgesStereo.size(); iconst size_t idx = vnIndexEdgeStereo[i];
if(pFrame->mvbOutlier[idx])
{
e->computeError();
}
const float chi2 = e->chi2();
if(chi2>chi2Stereo[it])
{
pFrame->mvbOutlier[idx]=true;
e->setLevel(1);
nBad++;
}
else
{
e->setLevel(0);
pFrame->mvbOutlier[idx]=false;
}
if(it==2)
e->setRobustKernel(0);
}
if(optimizer.edges().size()<10)
break;
}
// Recover optimized pose and return number of inliers
g2o::VertexSE3Expmap* vSE3_recov = static_cast(optimizer.vertex(0));
g2o::SE3Quat SE3quat_recov = vSE3_recov->estimate();
cv::Mat pose = Converter::toCvMat(SE3quat_recov);
pFrame->SetPose(pose);
return nInitialCorrespondences-nBad;
}
//局部BA
void Optimizer::LocalBundleAdjustment(KeyFrame *pKF, bool* pbStopFlag, Map* pMap)
{
// Local KeyFrames: First Breath Search from Current Keyframe
list lLocalKeyFrames;
lLocalKeyFrames.push_back(pKF);
pKF->mnBALocalForKF = pKF->mnId;
const vector vNeighKFs = pKF->GetVectorCovisibleKeyFrames();
for(int i=0, iend=vNeighKFs.size(); imnBALocalForKF = pKF->mnId;
if(!pKFi->isBad())
lLocalKeyFrames.push_back(pKFi);
}
// Local MapPoints seen in Local KeyFrames
list lLocalMapPoints;
for(list ::iterator lit=lLocalKeyFrames.begin() , lend=lLocalKeyFrames.end(); lit!=lend; lit++)
{
vector vpMPs = (*lit)->GetMapPointMatches();
for(vector ::iterator vit=vpMPs.begin(), vend=vpMPs.end(); vit!=vend; vit++)
{
MapPoint* pMP = *vit;
if(pMP)
if(!pMP->isBad())
if(pMP->mnBALocalForKF!=pKF->mnId)
{
lLocalMapPoints.push_back(pMP);
pMP->mnBALocalForKF=pKF->mnId;
}
}
}
// Fixed Keyframes. Keyframes that see Local MapPoints but that are not Local Keyframes
list lFixedCameras;
for(list ::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
{
map observations = (*lit)->GetObservations();
for(map ::iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
{
KeyFrame* pKFi = mit->first;
if(pKFi->mnBALocalForKF!=pKF->mnId && pKFi->mnBAFixedForKF!=pKF->mnId)
{
pKFi->mnBAFixedForKF=pKF->mnId;
if(!pKFi->isBad())
lFixedCameras.push_back(pKFi);
}
}
}
// Setup optimizer
g2o::SparseOptimizer optimizer;
g2o::BlockSolver_6_3::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverEigen();
g2o::BlockSolver_6_3 * solver_ptr = new g2o::BlockSolver_6_3(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
optimizer.setAlgorithm(solver);
if(pbStopFlag)
optimizer.setForceStopFlag(pbStopFlag);
unsigned long maxKFid = 0;
// Set Local KeyFrame vertices
for(list ::iterator lit=lLocalKeyFrames.begin(), lend=lLocalKeyFrames.end(); lit!=lend; lit++)
{
KeyFrame* pKFi = *lit;
g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
vSE3->setEstimate(Converter::toSE3Quat(pKFi->GetPose()));
vSE3->setId(pKFi->mnId);
vSE3->setFixed(pKFi->mnId==0);
optimizer.addVertex(vSE3);
if(pKFi->mnId>maxKFid)
maxKFid=pKFi->mnId;
}
// Set Fixed KeyFrame vertices
for(list ::iterator lit=lFixedCameras.begin(), lend=lFixedCameras.end(); lit!=lend; lit++)
{
KeyFrame* pKFi = *lit;
g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
vSE3->setEstimate(Converter::toSE3Quat(pKFi->GetPose()));
vSE3->setId(pKFi->mnId);
vSE3->setFixed(true);
optimizer.addVertex(vSE3);
if(pKFi->mnId>maxKFid)
maxKFid=pKFi->mnId;
}
// Set MapPoint vertices
const int nExpectedSize = (lLocalKeyFrames.size()+lFixedCameras.size())*lLocalMapPoints.size();
vector vpEdgesMono;
vpEdgesMono.reserve(nExpectedSize);
vector vpEdgeKFMono;
vpEdgeKFMono.reserve(nExpectedSize);
vector vpMapPointEdgeMono;
vpMapPointEdgeMono.reserve(nExpectedSize);
vector vpEdgesStereo;
vpEdgesStereo.reserve(nExpectedSize);
vector vpEdgeKFStereo;
vpEdgeKFStereo.reserve(nExpectedSize);
vector vpMapPointEdgeStereo;
vpMapPointEdgeStereo.reserve(nExpectedSize);
const float thHuberMono = sqrt(5.991);
const float thHuberStereo = sqrt(7.815);
for(list ::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
{
MapPoint* pMP = *lit;
g2o::VertexSBAPointXYZ* vPoint = new g2o::VertexSBAPointXYZ();
vPoint->setEstimate(Converter::toVector3d(pMP->GetWorldPos()));
int id = pMP->mnId+maxKFid+1;
vPoint->setId(id);
vPoint->setMarginalized(true);
optimizer.addVertex(vPoint);
const map observations = pMP->GetObservations();
//Set edges
for(map ::const_iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
{
KeyFrame* pKFi = mit->first;
if(!pKFi->isBad())
{
const cv::KeyPoint &kpUn = pKFi->mvKeysUn[mit->second];
// Monocular observation
if(pKFi->mvuRight[mit->second]<0)
{
Eigen::Matrix<double,2,1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
g2o::EdgeSE3ProjectXYZ* e = new g2o::EdgeSE3ProjectXYZ();
e->setVertex(0, dynamic_cast(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
e->fx = pKFi->fx;
e->fy = pKFi->fy;
e->cx = pKFi->cx;
e->cy = pKFi->cy;
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vpEdgeKFMono.push_back(pKFi);
vpMapPointEdgeMono.push_back(pMP);
}
else // Stereo observation
{
Eigen::Matrix<double,3,1> obs;
const float kp_ur = pKFi->mvuRight[mit->second];
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
g2o::EdgeStereoSE3ProjectXYZ* e = new g2o::EdgeStereoSE3ProjectXYZ();
e->setVertex(0, dynamic_cast(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave];
Eigen::Matrix3d Info = Eigen::Matrix3d::Identity()*invSigma2;
e->setInformation(Info);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberStereo);
e->fx = pKFi->fx;
e->fy = pKFi->fy;
e->cx = pKFi->cx;
e->cy = pKFi->cy;
e->bf = pKFi->mbf;
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vpEdgeKFStereo.push_back(pKFi);
vpMapPointEdgeStereo.push_back(pMP);
}
}
}
}
if(pbStopFlag)
if(*pbStopFlag)
return;
optimizer.initializeOptimization();
optimizer.optimize(5);
bool bDoMore= true;
if(pbStopFlag)
if(*pbStopFlag)
bDoMore = false;
if(bDoMore)
{
// Check inlier observations
for(size_t i=0, iend=vpEdgesMono.size(); iif(pMP->isBad())
continue;
if(e->chi2()>5.991 || !e->isDepthPositive())
{
e->setLevel(1);
}
e->setRobustKernel(0);
}
for(size_t i=0, iend=vpEdgesStereo.size(); iif(pMP->isBad())
continue;
if(e->chi2()>7.815 || !e->isDepthPositive())
{
e->setLevel(1);
}
e->setRobustKernel(0);
}
// Optimize again without the outliers
optimizer.initializeOptimization(0);
optimizer.optimize(10);
}
vector > vToErase;
vToErase.reserve(vpEdgesMono.size()+vpEdgesStereo.size());
// Check inlier observations
for(size_t i=0, iend=vpEdgesMono.size(); iif(pMP->isBad())
continue;
if(e->chi2()>5.991 || !e->isDepthPositive())
{
KeyFrame* pKFi = vpEdgeKFMono[i];
vToErase.push_back(make_pair(pKFi,pMP));
}
}
for(size_t i=0, iend=vpEdgesStereo.size(); iif(pMP->isBad())
continue;
if(e->chi2()>7.815 || !e->isDepthPositive())
{
KeyFrame* pKFi = vpEdgeKFStereo[i];
vToErase.push_back(make_pair(pKFi,pMP));
}
}
// Get Map Mutex
unique_lock lock(pMap->mMutexMapUpdate);
if(!vToErase.empty())
{
for(size_t i=0;iEraseMapPointMatch(pMPi);
pMPi->EraseObservation(pKFi);
}
}
// Recover optimized data
//Keyframes
for(list ::iterator lit=lLocalKeyFrames.begin(), lend=lLocalKeyFrames.end(); lit!=lend; lit++)
{
KeyFrame* pKF = *lit;
g2o::VertexSE3Expmap* vSE3 = static_cast(optimizer.vertex(pKF->mnId));
g2o::SE3Quat SE3quat = vSE3->estimate();
pKF->SetPose(Converter::toCvMat(SE3quat));
}
//Points
for(list ::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
{
MapPoint* pMP = *lit;
g2o::VertexSBAPointXYZ* vPoint = static_cast(optimizer.vertex(pMP->mnId+maxKFid+1));
pMP->SetWorldPos(Converter::toCvMat(vPoint->estimate()));
pMP->UpdateNormalAndDepth();
}
}
//优化本质图
// EssentialGraph包括所有的关键帧顶点,但是优化的边大大减少,包括spanning tree,共识权重,以及闭环连接边
void Optimizer::OptimizeEssentialGraph(Map* pMap, KeyFrame* pLoopKF, KeyFrame* pCurKF,
const LoopClosing::KeyFrameAndPose &NonCorrectedSim3,
const LoopClosing::KeyFrameAndPose &CorrectedSim3,
const mapset > &LoopConnections, const bool &bFixScale)
{
// Setup optimizer
g2o::SparseOptimizer optimizer;
optimizer.setVerbose(false);
g2o::BlockSolver_7_3::LinearSolverType * linearSolver =
new g2o::LinearSolverEigen();
g2o::BlockSolver_7_3 * solver_ptr= new g2o::BlockSolver_7_3(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
solver->setUserLambdaInit(1e-16);
optimizer.setAlgorithm(solver);
const vector vpKFs = pMap->GetAllKeyFrames();
const vector vpMPs = pMap->GetAllMapPoints();
const unsigned int nMaxKFid = pMap->GetMaxKFid();
vector > vScw(nMaxKFid+1);
vector > vCorrectedSwc(nMaxKFid+1);
vector vpVertices(nMaxKFid+1);
//权重阈值的设定
const int minFeat = 100;
// Set KeyFrame vertices
for(size_t i=0, iend=vpKFs.size(); iif(pKF->isBad())
continue;
g2o::VertexSim3Expmap* VSim3 = new g2o::VertexSim3Expmap();
const int nIDi = pKF->mnId;
LoopClosing::KeyFrameAndPose::const_iterator it = CorrectedSim3.find(pKF);
if(it!=CorrectedSim3.end())
{
vScw[nIDi] = it->second;
VSim3->setEstimate(it->second);
}
else
{
Eigen::Matrix<double,3,3> Rcw = Converter::toMatrix3d(pKF->GetRotation());
Eigen::Matrix<double,3,1> tcw = Converter::toVector3d(pKF->GetTranslation());
g2o::Sim3 Siw(Rcw,tcw,1.0);
vScw[nIDi] = Siw;
VSim3->setEstimate(Siw);
}
if(pKF==pLoopKF)
VSim3->setFixed(true);
VSim3->setId(nIDi);
VSim3->setMarginalized(false);
VSim3->_fix_scale = bFixScale;
optimizer.addVertex(VSim3);
vpVertices[nIDi]=VSim3;
}
setlong unsigned int,long unsigned int> > sInsertedEdges;
const Eigen::Matrix<double,7,7> matLambda = Eigen::Matrix<double,7,7>::Identity();
// Set Loop edges
for(mapset >::const_iterator mit = LoopConnections.begin(), mend=LoopConnections.end(); mit!=mend; mit++)
{
KeyFrame* pKF = mit->first;
const long unsigned int nIDi = pKF->mnId;
const set &spConnections = mit->second;
const g2o::Sim3 Siw = vScw[nIDi];
const g2o::Sim3 Swi = Siw.inverse();
for(set ::const_iterator sit=spConnections.begin(), send=spConnections.end(); sit!=send; sit++)
{
const long unsigned int nIDj = (*sit)->mnId;
if((nIDi!=pCurKF->mnId || nIDj!=pLoopKF->mnId) && pKF->GetWeight(*sit)continue;
const g2o::Sim3 Sjw = vScw[nIDj];
const g2o::Sim3 Sji = Sjw * Swi;
g2o::EdgeSim3* e = new g2o::EdgeSim3();
e->setVertex(1, dynamic_cast(optimizer.vertex(nIDj)));
e->setVertex(0, dynamic_cast(optimizer.vertex(nIDi)));
e->setMeasurement(Sji);
e->information() = matLambda;
optimizer.addEdge(e);
sInsertedEdges.insert(make_pair(min(nIDi,nIDj),max(nIDi,nIDj)));
}
}
// Set normal edges
for(size_t i=0, iend=vpKFs.size(); iconst int nIDi = pKF->mnId;
g2o::Sim3 Swi;
LoopClosing::KeyFrameAndPose::const_iterator iti = NonCorrectedSim3.find(pKF);
if(iti!=NonCorrectedSim3.end())
Swi = (iti->second).inverse();
else
Swi = vScw[nIDi].inverse();
KeyFrame* pParentKF = pKF->GetParent();
// Spanning tree edge
if(pParentKF)
{
int nIDj = pParentKF->mnId;
g2o::Sim3 Sjw;
LoopClosing::KeyFrameAndPose::const_iterator itj = NonCorrectedSim3.find(pParentKF);
if(itj!=NonCorrectedSim3.end())
Sjw = itj->second;
else
Sjw = vScw[nIDj];
g2o::Sim3 Sji = Sjw * Swi;
g2o::EdgeSim3* e = new g2o::EdgeSim3();
e->setVertex(1, dynamic_cast(optimizer.vertex(nIDj)));
e->setVertex(0, dynamic_cast(optimizer.vertex(nIDi)));
e->setMeasurement(Sji);
e->information() = matLambda;
optimizer.addEdge(e);
}
// Loop edges
const set sLoopEdges = pKF->GetLoopEdges();
for(set ::const_iterator sit=sLoopEdges.begin(), send=sLoopEdges.end(); sit!=send; sit++)
{
KeyFrame* pLKF = *sit;
if(pLKF->mnIdmnId)
{
g2o::Sim3 Slw;
LoopClosing::KeyFrameAndPose::const_iterator itl = NonCorrectedSim3.find(pLKF);
if(itl!=NonCorrectedSim3.end())
Slw = itl->second;
else
Slw = vScw[pLKF->mnId];
g2o::Sim3 Sli = Slw * Swi;
g2o::EdgeSim3* el = new g2o::EdgeSim3();
el->setVertex(1, dynamic_cast(optimizer.vertex(pLKF->mnId)));
el->setVertex(0, dynamic_cast(optimizer.vertex(nIDi)));
el->setMeasurement(Sli);
el->information() = matLambda;
optimizer.addEdge(el);
}
}
// Covisibility graph edges
const vector vpConnectedKFs = pKF->GetCovisiblesByWeight(minFeat);
for(vector ::const_iterator vit=vpConnectedKFs.begin(); vit!=vpConnectedKFs.end(); vit++)
{
KeyFrame* pKFn = *vit;
if(pKFn && pKFn!=pParentKF && !pKF->hasChild(pKFn) && !sLoopEdges.count(pKFn))
{
if(!pKFn->isBad() && pKFn->mnIdmnId)
{
if(sInsertedEdges.count(make_pair(min(pKF->mnId,pKFn->mnId),max(pKF->mnId,pKFn->mnId))))
continue;
g2o::Sim3 Snw;
LoopClosing::KeyFrameAndPose::const_iterator itn = NonCorrectedSim3.find(pKFn);
if(itn!=NonCorrectedSim3.end())
Snw = itn->second;
else
Snw = vScw[pKFn->mnId];
g2o::Sim3 Sni = Snw * Swi;
g2o::EdgeSim3* en = new g2o::EdgeSim3();
en->setVertex(1, dynamic_cast(optimizer.vertex(pKFn->mnId)));
en->setVertex(0, dynamic_cast(optimizer.vertex(nIDi)));
en->setMeasurement(Sni);
en->information() = matLambda;
optimizer.addEdge(en);
}
}
}
}
// Optimize!
optimizer.initializeOptimization();
optimizer.optimize(20);
unique_lock lock(pMap->mMutexMapUpdate);
// SE3 Pose Recovering. Sim3:[sR t;0 1] -> SE3:[R t/s;0 1]
for(size_t i=0;iconst int nIDi = pKFi->mnId;
g2o::VertexSim3Expmap* VSim3 = static_cast(optimizer.vertex(nIDi));
g2o::Sim3 CorrectedSiw = VSim3->estimate();
vCorrectedSwc[nIDi]=CorrectedSiw.inverse();
Eigen::Matrix3d eigR = CorrectedSiw.rotation().toRotationMatrix();
Eigen::Vector3d eigt = CorrectedSiw.translation();
double s = CorrectedSiw.scale();
eigt *=(1./s); //[R t/s;0 1]
cv::Mat Tiw = Converter::toCvSE3(eigR,eigt);
pKFi->SetPose(Tiw);
}
// Correct points. Transform to "non-optimized" reference keyframe pose and transform back with optimized pose
for(size_t i=0, iend=vpMPs.size(); iif(pMP->isBad())
continue;
int nIDr;
if(pMP->mnCorrectedByKF==pCurKF->mnId)
{
nIDr = pMP->mnCorrectedReference;
}
else
{
KeyFrame* pRefKF = pMP->GetReferenceKeyFrame();
nIDr = pRefKF->mnId;
}
g2o::Sim3 Srw = vScw[nIDr];
g2o::Sim3 correctedSwr = vCorrectedSwc[nIDr];
cv::Mat P3Dw = pMP->GetWorldPos();
Eigen::Matrix<double,3,1> eigP3Dw = Converter::toVector3d(P3Dw);
Eigen::Matrix<double,3,1> eigCorrectedP3Dw = correctedSwr.map(Srw.map(eigP3Dw));
cv::Mat cvCorrectedP3Dw = Converter::toCvMat(eigCorrectedP3Dw);
pMP->SetWorldPos(cvCorrectedP3Dw);
pMP->UpdateNormalAndDepth();
}
}
//在用RANSAC求解过Sim3,以及通过Sim3匹配更多的地图点后,对当前关键帧,闭环关键帧,
// 以及匹配的地图点进行优化,获得更准确的Sim3位姿,再去下一步的闭环调整。
int Optimizer::OptimizeSim3(KeyFrame *pKF1, KeyFrame *pKF2, vector &vpMatches1, g2o::Sim3 &g2oS12, const float th2, const bool bFixScale)
{
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverDense();
g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
optimizer.setAlgorithm(solver);
// Calibration
const cv::Mat &K1 = pKF1->mK;
const cv::Mat &K2 = pKF2->mK;
// Camera poses
const cv::Mat R1w = pKF1->GetRotation();
const cv::Mat t1w = pKF1->GetTranslation();
const cv::Mat R2w = pKF2->GetRotation();
const cv::Mat t2w = pKF2->GetTranslation();
// Set Sim3 vertex
g2o::VertexSim3Expmap * vSim3 = new g2o::VertexSim3Expmap();
vSim3->_fix_scale=bFixScale;
vSim3->setEstimate(g2oS12);
vSim3->setId(0);
vSim3->setFixed(false);
vSim3->_principle_point1[0] = K1.at<float>(0,2);
vSim3->_principle_point1[1] = K1.at<float>(1,2);
vSim3->_focal_length1[0] = K1.at<float>(0,0);
vSim3->_focal_length1[1] = K1.at<float>(1,1);
vSim3->_principle_point2[0] = K2.at<float>(0,2);
vSim3->_principle_point2[1] = K2.at<float>(1,2);
vSim3->_focal_length2[0] = K2.at<float>(0,0);
vSim3->_focal_length2[1] = K2.at<float>(1,1);
optimizer.addVertex(vSim3);
// Set MapPoint vertices
const int N = vpMatches1.size();
const vector vpMapPoints1 = pKF1->GetMapPointMatches();
vector vpEdges12;
vector vpEdges21;
vector vnIndexEdge;
vnIndexEdge.reserve(2*N);
vpEdges12.reserve(2*N);
vpEdges21.reserve(2*N);
const float deltaHuber = sqrt(th2);
int nCorrespondences = 0;
for(int i=0; iif(!vpMatches1[i])
continue;
MapPoint* pMP1 = vpMapPoints1[i];
MapPoint* pMP2 = vpMatches1[i];
const int id1 = 2*i+1;
const int id2 = 2*(i+1);
const int i2 = pMP2->GetIndexInKeyFrame(pKF2);
if(pMP1 && pMP2)
{
if(!pMP1->isBad() && !pMP2->isBad() && i2>=0)
{
g2o::VertexSBAPointXYZ* vPoint1 = new g2o::VertexSBAPointXYZ();
cv::Mat P3D1w = pMP1->GetWorldPos();
cv::Mat P3D1c = R1w*P3D1w + t1w;
vPoint1->setEstimate(Converter::toVector3d(P3D1c));
vPoint1->setId(id1);
vPoint1->setFixed(true);
optimizer.addVertex(vPoint1);
g2o::VertexSBAPointXYZ* vPoint2 = new g2o::VertexSBAPointXYZ();
cv::Mat P3D2w = pMP2->GetWorldPos();
cv::Mat P3D2c = R2w*P3D2w + t2w;
vPoint2->setEstimate(Converter::toVector3d(P3D2c));
vPoint2->setId(id2);
vPoint2->setFixed(true);
optimizer.addVertex(vPoint2);
}
else
continue;
}
else
continue;
nCorrespondences++;
// Set edge x1 = S12*X2
Eigen::Matrix<double,2,1> obs1;
const cv::KeyPoint &kpUn1 = pKF1->mvKeysUn[i];
obs1 << kpUn1.pt.x, kpUn1.pt.y;
g2o::EdgeSim3ProjectXYZ* e12 = new g2o::EdgeSim3ProjectXYZ();
e12->setVertex(0, dynamic_cast(optimizer.vertex(id2)));
e12->setVertex(1, dynamic_cast(optimizer.vertex(0)));
e12->setMeasurement(obs1);
const float &invSigmaSquare1 = pKF1->mvInvLevelSigma2[kpUn1.octave];
e12->setInformation(Eigen::Matrix2d::Identity()*invSigmaSquare1);
g2o::RobustKernelHuber* rk1 = new g2o::RobustKernelHuber;
e12->setRobustKernel(rk1);
rk1->setDelta(deltaHuber);
optimizer.addEdge(e12);
// Set edge x2 = S21*X1
Eigen::Matrix<double,2,1> obs2;
const cv::KeyPoint &kpUn2 = pKF2->mvKeysUn[i2];
obs2 << kpUn2.pt.x, kpUn2.pt.y;
g2o::EdgeInverseSim3ProjectXYZ* e21 = new g2o::EdgeInverseSim3ProjectXYZ();
e21->setVertex(0, dynamic_cast(optimizer.vertex(id1)));
e21->setVertex(1, dynamic_cast(optimizer.vertex(0)));
e21->setMeasurement(obs2);
float invSigmaSquare2 = pKF2->mvInvLevelSigma2[kpUn2.octave];
e21->setInformation(Eigen::Matrix2d::Identity()*invSigmaSquare2);
g2o::RobustKernelHuber* rk2 = new g2o::RobustKernelHuber;
e21->setRobustKernel(rk2);
rk2->setDelta(deltaHuber);
optimizer.addEdge(e21);
vpEdges12.push_back(e12);
vpEdges21.push_back(e21);
vnIndexEdge.push_back(i);
}
// Optimize!
optimizer.initializeOptimization();
optimizer.optimize(5);
// Check inliers
int nBad=0;
for(size_t i=0; iif(!e12 || !e21)
continue;
if(e12->chi2()>th2 || e21->chi2()>th2)
{
size_t idx = vnIndexEdge[i];
vpMatches1[idx]=static_cast(NULL);
optimizer.removeEdge(e12);
optimizer.removeEdge(e21);
vpEdges12[i]=static_cast(NULL);
vpEdges21[i]=static_cast(NULL);
nBad++;
}
}
int nMoreIterations;
if(nBad>0)
nMoreIterations=10;
else
nMoreIterations=5;
if(nCorrespondences-nBad<10)
return 0;
// Optimize again only with inliers
optimizer.initializeOptimization();
optimizer.optimize(nMoreIterations);
int nIn = 0;
for(size_t i=0; iif(!e12 || !e21)
continue;
if(e12->chi2()>th2 || e21->chi2()>th2)
{
size_t idx = vnIndexEdge[i];
vpMatches1[idx]=static_cast(NULL);
}
else
nIn++;
}
// Recover optimized Sim3
g2o::VertexSim3Expmap* vSim3_recov = static_cast(optimizer.vertex(0));
g2oS12= vSim3_recov->estimate();
return nIn;
}
} //namespace ORB_SLAM