- yolov5单目测距+速度测量+目标跟踪
cv_2025
YOLO目标跟踪人工智能计算机视觉机器学习图像处理opencv
要在YOLOv5中添加测距和测速功能,您需要了解以下两个部分的原理:单目测距算法单目测距是使用单个摄像头来估计场景中物体的距离。常见的单目测距算法包括基于视差的方法(如立体匹配)和基于深度学习的方法(如神经网络)。基于深度学习的方法通常使用卷积神经网络(CNN)来学习从图像到深度图的映射关系。单目测距代码单目测距涉及到坐标转换,代码如下:defconvert_2D_to_3D(point2D,R,
- 【小白深度教程 1.5】手把手教你用立体匹配进行双目深度估计,以及 3D 点云生成(含 Python 代码解读)
小寒学姐学AI
从零开始的深度补全和深度估计3dpython人工智能计算机视觉自动驾驶深度学习笔记
【小白深度教程1.5】手把手教你用立体匹配进行双目深度估计,以及3D点云生成(含Python代码解读)1.立体匹配的原理2.块匹配算法(BlockMatchingAlgorithm)2.1代码中的立体匹配过程概述2.2代码原理及公式2.2.1.窗口匹配和代价函数(SAD)2.2.2.匹配过程2.2.3.视差图生成2.3代码的整体算法流程2.4性能与优化3.加载双目图像计算视差4.读取相机参数并计算
- 科普类——双目视觉在自动驾驶中存在的问题、挑战以及解决方案(三)
JANGHIGH
科普类无人驾驶自动驾驶人工智能机器学习
科普类——双目视觉在自动驾驶中存在的问题、挑战以及解决方案(三)双目视觉在自动驾驶中的应用虽然具有许多优势,但也存在一些问题和挑战,这些问题在不同的驾驶环境和条件下可能会有所不同。以下是一些主要问题及其可能的解决方案:立体匹配和视差计算:双目视觉的核心在于通过计算两幅图像之间的视差来获取深度信息。然而,立体匹配算法在处理遮挡、无特征区域或具有重复图案的高纹理区域时可能会出现精度问题。解决方案包括使
- 《RAFT-Stereo:Multilevel Recurrent Field Transforms for Stereo Matching》论文笔记
m_buddy
#DepthEstimation#OpticalFlowRAFT-Stereo
参考代码:RAFT-Stereo1.概述导读:RAFT算法是非常经典的立体匹配算法,在光流和立体匹配任务中有着广泛的运用。而这篇文章正是基于RAFT并将其运用到了立体匹配中,并且在如下的几个方面进行改进:1)相比原生的RAFT算法钟重点关注X轴(W方向)的视差信息,前提是输入的图像对需要事先经过极线校准;2)在GPU的update阶段使用stride为[8,16,32][8,16,32][8,16
- 双目相机立体匹配基础
极客范儿
传感器标定双目相机立体匹配
双目匹配就是用左相机和右相机去拍摄同一个点,目的是找到三维世界的同一个点,也就是在左相机和右相机中的成像点之间的像素差(视差),根据视差去求解深度,那么找到左相机点到右相机的同一个对应点这个过程就是双目相机立体匹配。一、双目视觉流程双目视觉流程是通过双目相机的左相机和右相机拍摄标定板的图片制作标定(离线),在线拍摄后进行矫正。满足两个相机是平行的要求,做匹配点也能满足从一维在同一行去搜索,接着进行
- 第一个项目总结:双目测距(python代码转为c++代码,最终输出点云图,再转为ros点云图,再实现可视化)
zerogin+
c++opencv开发语言
目录1.双目成像原理2.双目测距python代码3.python代码转为c++代码(1)双目相机参数(2)立体校正(3)立体匹配4.opencv的点云图转为ros点云图1.双目成像原理摘自《视觉SLAM十四讲》2.双目测距python代码(46条消息)双目测距理论及其python实现_python双目测距_javastart的博客-CSDN博客具体过程为:双目标定-->立体校正(含消除畸变)-->
- 立体视觉几何 (二)
dc爱傲雪和技术
计算机视觉
1.视差2.立体匹配立体匹配的基本概念:匹配目标:在立体匹配中,主要目标是确定左图像中像素的右图像中的对应像素。这个对应像素通常位于相同的行。视差(Disparity):视差d是右图像中对应像素xr和左图像中像素xl之间的水平位置差。视差是深度信息的关键指标。匹配方法:方法涉及在左图像中以某个像素为中心取一个窗口W,然后将这个窗口沿水平方向平移视差d,并将其放置在右图像中。接着比较左图像中窗口W和
- KITTI2012、ETH3D数据集下载
代码写着写着就会了
ubuntulinux
KITTI2012/2015双目立体匹配(stereomatching)数据集百度云下载_kitti2015数据集百度云-CSDN博客Datasets-ETH3D
- 使用opencv做双目测距(相机标定+立体匹配+测距)
AAI机器之心
opencv数码相机人工智能pytorch机器学习计算机视觉
最近在做双目测距,觉得有必要记录点东西,所以我的第一篇博客就这么诞生啦~双目测距属于立体视觉这一块,我觉得应该有很多人踩过这个坑了,但网上的资料依旧是云里雾里的,要么是理论讲一大堆,最后发现还不知道怎么做,要么就是直接代码一贴,让你懵逼。所以今天我想做的,是尽量给大家一个明确的阐述,并且能够上手做出来。一、标定首先我们要对摄像头做标定,具体的公式推导在learningopencv中有详细的解释,这
- [2015 Springer] Local Image Descriptor: Modern Approaches——1 Introduction
AllisWell_WP
计算机视觉图像处理书翻译计算机视觉图像处理特征提取描述符翻译
转载请注明链接:有问题请及时联系博主:Alliswell_WP持续更新中…翻译本地图像描述符:现代方法——作者:BinFan,ZhenhuaWang,FuchaoWu有关该系列的更多信息,请访问http://www.springer.com/series/10028前言1在过去的15年中,特征点描述符已成为计算机视觉社区中必不可少的工具。它们是从图像检索到多图像立体匹配以及从表面重建到图像增强等应
- UI演示双视图立体匹配与重建
Jurio.
CVPython科研经验uiqtpythonopencv
相关文章:PyQt5和Qtdesigner的详细安装教程:https://blog.csdn.net/qq_43811536/article/details/135185233?spm=1001.2014.3001.5501Qtdesigner界面和所有组件功能的详细介绍:https://blog.csdn.net/qq_43811536/article/details/135186862?spm
- 【论文简述】Rethinking Cross-Entropy Loss for Stereo Matching Networks(arxiv 2023)
华科附小第一名
立体匹配立体匹配交叉熵损失过渡平滑和不对准问题跨域泛化
一、论文简述1.第一作者:PengXu2.发表年份:20233.发表期刊:arxiv4.关键词:立体匹配,交叉熵损失,过渡平滑和不对准问题,跨域泛化5.探索动机:立体匹配通常被认为是深度学习中的一个回归任务,通常采用平滑L1损失结合Soft-Argmax估计器来训练网络,达到亚像素级的视差精度。然而,平滑L1损失缺乏对代价体的直接约束,在训练过程中容易出现过拟合。Soft-Argmax是基于网络输
- 立体匹配算法(Stereo correspondence)SGM
ouger爱编程
双目视觉原理与攻击算法
SGM(Semi-GlobalMatching)原理:SGM的原理在wiki百科和matlab官网上有比较详细的解释:wikimatlab如果想完全了解原理还是建议看原论文paper(我就不看了,懒癌犯了。)优质论文解读和代码实现一位大神自己用c++实现的SGM算法github先介绍两个重要的参数:注:这一部分参考的是matlab的解释,后面的部分是参考的opencv的实现,细节可能有些出入,大体
- Qt designer设计UI实例:双视图立体匹配与重建的可视化UI
Jurio.
科研经验CVqtui开发语言opencv
PyQt5和Qtdesigner的详细安装教程:https://blog.csdn.net/qq_43811536/article/details/135185233?spm=1001.2014.3001.5501Qtdesigner界面和所有组件功能的详细介绍:https://blog.csdn.net/qq_43811536/article/details/135186862?spm=1001
- 【论文简述】High-frequency Stereo Matching Network(CVPR 2023)
华科附小第一名
立体匹配3D重建深度学习MVS立体匹配高频信息LSTM
一、论文简述1.第一作者:HaoliangZhao2.发表年份:20233.发表期刊:CVPR4.关键词:立体匹配、MVS、深度学习、高频信息、LSTM5.探索动机:(1)当涉及到估计的视差图的更精细的特征时,大多数当前的方法都是不足的。特别是对于物体的边缘性能。在散景和渲染应用程序中,视差图的边缘性能对最终结果至关重要。(2)无纹理区域的失配和薄物体的缺失也是导致视差图显著恶化的重要因素。例如,
- 【论文简述】Learning Depth Estimation for Transparent and Mirror Surfaces(ICCV 2023)
华科附小第一名
深度估计立体匹配深度估计立体匹配深度学习分割透明物体镜子
一、论文简述1.第一作者:AlexCostanzino2.发表年份:20233.发表期刊:ICCV4.关键词:深度感知、立体匹配、深度学习、分割、透明物体、镜子5.探索动机:透明或镜面(ToM)制成的材料,从建筑物的玻璃窗到汽车和电器的反射表面。对于利用计算机视觉在未知环境中操作的自主代理来说,这可能是一个艰巨的挑战。在空间人工智能涉及的众多任务中,对于计算机视觉算法和深度网络来说,准确估计这些表
- yolov5单目测距+速度测量+目标跟踪
阿利同学
目标跟踪人工智能深度学习单目测距yolov5测速yolov8测距
要在YOLOv5中添加测距和测速功能,您需要了解以下两个部分的原理:单目测距算法单目测距是使用单个摄像头来估计场景中物体的距离。常见的单目测距算法包括基于视差的方法(如立体匹配)和基于深度学习的方法(如神经网络)。基于深度学习的方法通常使用卷积神经网络(CNN)来学习从图像到深度图的映射关系。单目测距代码单目测距涉及到坐标转换,代码如下:defconvert_2D_to_3D(point2D,R,
- 论文阅读《Uncertainty Guided Adaptive Warping for Robust and Efficient Stereo Matching》
CV科研随想录
论文阅读论文阅读
论文地址:https://openaccess.thecvf.com/content/ICCV2023/html/Jing_Uncertainty_Guided_Adaptive_Warping_for_Robust_and_Efficient_Stereo_Matching_ICCV_2023_paper.html概述 当前基于相关性代价体的立体匹配方法在跨域预测上表现不佳,导致模型在现实世界
- 论文阅读《DPS-Net: Deep Polarimetric Stereo Depth Estimation》
CV科研随想录
论文阅读论文阅读
论文地址:https://openaccess.thecvf.com/content/ICCV2023/html/Tian_DPS-Net_Deep_Polarimetric_Stereo_Depth_Estimation_ICCV_2023_paper.html概述 立体匹配模型难以处理无纹理场景的匹配,现有的方法通常假设物体表面是光滑的,或者光照是受控的,这些条件在实际场景中很难满足,只适用
- 论文阅读《Masked representation learning for domain generalized stereo matching》
CV科研随想录
论文阅读论文阅读
论文地址:https://openaccess.thecvf.com/content/CVPR2023/html/Rao_Masked_Representation_Learning_for_Domain_Generalized_Stereo_Matching_CVPR_2023_paper.html概述 近年来,立体匹配的领域泛化能力受到了越来越多的关注,但是现有的方法往往忽略了模型在不同训练
- Deep Learning for Monocular Depth Estimation: A Review.基于深度学习的深度估计
qaaaaaaz
计算机视觉深度学习人工智能
传统的深度估计方法通常是使用双目相机,计算两个2D图像的视差,然后通过立体匹配和三角剖分得到深度图。然而,双目深度估计方法至少需要两个固定的摄像机,当场景的纹理较少或者没有纹理的时候,很难从图像中捕捉足够的特征来匹配。所以最近单目深度估计发展的越来越快,但是由于单目图像缺乏可靠的立体视觉关系,因此在三维空间中回归深度本质上是一种不适定问题。单目图像采用二维形式来重新反射三维世界,然而,有一维场景叫
- SGBM算法详解(一)
OrdinaryW
上一篇文章简单介绍了立体匹配算法相关的资源,这里简单总结一下立体匹配算法,总体来讲包含以下6个步骤:1.Preprocess(GaussBlur,SobelX,...etc)2.CostCompute(AD,SAD,SSD,BT,NCC,Census,...etc)3.CostAggregation(Boxfilter,CBCA,WMF,MST,...etc)4.CostOptimization(
- OpenCV:《OpenCV3编程入门》全书概要
航空界的小爬虫
openCV
目录一、模块二、算法介绍三、功能介绍四、图像处理(imgproc组件部分)五、图像变换(imgproc组件部分)六、图像轮廓和分割修复(imgproc组件部分)七、直方图与匹配(imgproc组件部分)八、角点检测(feature2d组件部分)九、特征检测与匹配(feature2d组件部分)十:学习书目一、模块calib3d:相机校准和三位重建contrib:人脸识别、立体匹配、人工视网膜模型co
- Cascade-MVSNet论文笔记
知识推荐号
MVS论文笔记python图像处理多视图立体视觉三维重建
Cascade-MVSNet论文笔记摘要1立体匹配(StereoMatching)2多视图立体视觉(Multi-ViewStereo)3立体视觉和立体视觉的高分辨率输出4代价体表达方式(CostvolumeFormulation)4.1多视图立体视觉的3D代价体(3DCostVolumesinMulti-ViewStereo)4.2立体匹配的3D代价体(3DCostVolumesinStereoM
- 深度学习之基于YoloV5的目标检测和双目测距系统
雅致教育
深度学习python计算机毕业设计深度学习YOLO目标检测
欢迎大家点赞、收藏、关注、评论啦,由于篇幅有限,只展示了部分核心代码。文章目录一项目简介二、功能三、系统四.总结一项目简介 双目测距系统利用两个相机的图像来计算目标到相机的距离。通过对左右相机图像进行立体匹配,可以获得目标的三维坐标信息。深度学习在双目测距中的应用,例如使用卷积神经网络(CNN)进行立体匹配,提高了测距的准确性和稳定性。二、功能 环境:Python3.8.5、torch1.8.
- 双目相机立体匹配算法BM和SGBM
没伞的行者
计算机视觉opencv计算机视觉程序人生人工智能
立体匹配——在两个不同摄像机视图中匹配一个三维点——只能在两个摄像机视图重叠的可视区域进行计算,OpenCV实现了两种立体匹配算法,并且它们共享通用的对象接口。首先是快匹配算法(blockmatching,BM),它使用小的“绝对值之差的和”(SAD)窗口来寻找左右立体校正图像之间的匹配点,更适合与强纹理图像;第二个是半全局块匹配算法(semi-globalblockmatching,SGBM),
- 立体匹配--中值滤波
zfywen
计算机视觉人工智能c++
立体匹配文章目录一.课题说明二.概要设计三.算法设计四.源程序及注释五.运行及调试分析六.课程设计总结一、课题说明立体匹配是立体视觉从图像生成三维点云的常规手段。立体匹配算法主要是通过建立一个能量代价函数,通过此能量代价函数最小化来估计像素点视差值。立体匹配算法的实质就是一个最优化求解问题,通过建立合理的能量函数,增加一些约束,采用最优化理论的方法进行方程求解,这也是所有的病态问题求解方法。二、概
- 双目立体匹配原理及流程简介
cy413026
#CV与opencv双目视觉
立体视觉:立体视觉:立体视觉是计算机视觉领域的一个重要课题,它的目的在于重构场景的三维几何信息.其应用包括移动机器人的自主导航系统,航空及遥感测量,工业自动化系统等。双目立体视觉:双目立体视觉(BinocularStereoVision)是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。双目匹配
- 立体匹配算法SGBM
殇沐
三维重建
SGBM算法,作为一种全局匹配算法,立体匹配的效果明显好于局部匹配算法,但是同时复杂度上也要远远大于局部匹配算法。原文链接:https://blog.csdn.net/renshengrumenglibing/article/details/8525328SGBM的基本原理SGBM的基本步骤涉及:预处理、代价计算、动态规划以及后处理预处理Step1:SGBM采用水平Sobel算子,把图像做处理,公
- 双目项目实战---测距(获取三维坐标和深度信息)
陈子迩
双目视觉人工智能数码相机opencvpython目标检测计算机视觉
目录1.简介2.模块讲解2.1立体校正2.1.1校正目的2.1.2校正方法2.2立体匹配和视差计算2.3深度计算3.完整代码1.简介双目视觉是一种通过两个摄像机(或者两个镜头)同时拍摄到同一个场景,再通过计算机算法来获取该场景深度和三维信息的技术。这两个摄像机可以放置在固定的位置上,也可以通过移动来获取不同角度的图像以便更好地理解物体形状和结构。双目视觉的工作原理是,在两个摄像机之间的距离(称为基
- C/C++Win32编程基础详解视频下载
择善Zach
编程C++Win32
课题视频:C/C++Win32编程基础详解
视频知识:win32窗口的创建
windows事件机制
主讲:择善Uncle老师
学习交流群:386620625
验证码:625
--
- Guava Cache使用笔记
bylijinnan
javaguavacache
1.Guava Cache的get/getIfPresent方法当参数为null时会抛空指针异常
我刚开始使用时还以为Guava Cache跟HashMap一样,get(null)返回null。
实际上Guava整体设计思想就是拒绝null的,很多地方都会执行com.google.common.base.Preconditions.checkNotNull的检查。
2.Guava
- 解决ora-01652无法通过128(在temp表空间中)
0624chenhong
oracle
解决ora-01652无法通过128(在temp表空间中)扩展temp段的过程
一个sql语句后,大约花了10分钟,好不容易有一个结果,但是报了一个ora-01652错误,查阅了oracle的错误代码说明:意思是指temp表空间无法自动扩展temp段。这种问题一般有两种原因:一是临时表空间空间太小,二是不能自动扩展。
分析过程:
既然是temp表空间有问题,那当
- Struct在jsp标签
不懂事的小屁孩
struct
非UI标签介绍:
控制类标签:
1:程序流程控制标签 if elseif else
<s:if test="isUsed">
<span class="label label-success">True</span>
</
- 按对象属性排序
换个号韩国红果果
JavaScript对象排序
利用JavaScript进行对象排序,根据用户的年龄排序展示
<script>
var bob={
name;bob,
age:30
}
var peter={
name;peter,
age:30
}
var amy={
name;amy,
age:24
}
var mike={
name;mike,
age:29
}
var john={
- 大数据分析让个性化的客户体验不再遥远
蓝儿唯美
数据分析
顾客通过多种渠道制造大量数据,企业则热衷于利用这些信息来实现更为个性化的体验。
分析公司Gartner表示,高级分析会成为客户服务的关键,但是大数据分析的采用目前仅局限于不到一成的企业。 挑战在于企业还在努力适应结构化数据,疲于根据自身的客户关系管理(CRM)系统部署有效的分析框架,以及集成不同的内外部信息源。
然而,面对顾客通过数字技术参与而产生的快速变化的信息,企业需要及时作出反应。要想实
- java笔记4
a-john
java
操作符
1,使用java操作符
操作符接受一个或多个参数,并生成一个新值。参数的形式与普通的方法调用不用,但是效果是相同的。加号和一元的正号(+)、减号和一元的负号(-)、乘号(*)、除号(/)以及赋值号(=)的用法与其他编程语言类似。
操作符作用于操作数,生成一个新值。另外,有些操作符可能会改变操作数自身的
- 从裸机编程到嵌入式Linux编程思想的转变------分而治之:驱动和应用程序
aijuans
嵌入式学习
笔者学习嵌入式Linux也有一段时间了,很奇怪的是很多书讲驱动编程方面的知识,也有很多书将ARM9方面的知识,但是从以前51形式的(对寄存器直接操作,初始化芯片的功能模块)编程方法,和思维模式,变换为基于Linux操作系统编程,讲这个思想转变的书几乎没有,让初学者走了很多弯路,撞了很多难墙。
笔者因此写上自己的学习心得,希望能给和我一样转变
- 在springmvc中解决FastJson循环引用的问题
asialee
循环引用fastjson
我们先来看一个例子:
package com.elong.bms;
import java.io.OutputStream;
import java.util.HashMap;
import java.util.Map;
import co
- ArrayAdapter和SimpleAdapter技术总结
百合不是茶
androidSimpleAdapterArrayAdapter高级组件基础
ArrayAdapter比较简单,但它只能用于显示文字。而SimpleAdapter则有很强的扩展性,可以自定义出各种效果
ArrayAdapter;的数据可以是数组或者是队列
// 获得下拉框对象
AutoCompleteTextView textview = (AutoCompleteTextView) this
- 九封信
bijian1013
人生励志
有时候,莫名的心情不好,不想和任何人说话,只想一个人静静的发呆。有时候,想一个人躲起来脆弱,不愿别人看到自己的伤口。有时候,走过熟悉的街角,看到熟悉的背影,突然想起一个人的脸。有时候,发现自己一夜之间就长大了。 2014,写给人
- Linux下安装MySQL Web 管理工具phpMyAdmin
sunjing
PHPInstallphpMyAdmin
PHP http://php.net/
phpMyAdmin http://www.phpmyadmin.net
Error compiling PHP on CentOS x64
一、安装Apache
请参阅http://billben.iteye.com/admin/blogs/1985244
二、安装依赖包
sudo yum install gd
- 分布式系统理论
bit1129
分布式
FLP
One famous theory in distributed computing, known as FLP after the authors Fischer, Lynch, and Patterson, proved that in a distributed system with asynchronous communication and process crashes,
- ssh2整合(spring+struts2+hibernate)-附源码
白糖_
eclipsespringHibernatemysql项目管理
最近抽空又整理了一套ssh2框架,主要使用的技术如下:
spring做容器,管理了三层(dao,service,actioin)的对象
struts2实现与页面交互(MVC),自己做了一个异常拦截器,能拦截Action层抛出的异常
hibernate与数据库交互
BoneCp数据库连接池,据说比其它数据库连接池快20倍,仅仅是据说
MySql数据库
项目用eclipse
- treetable bug记录
braveCS
table
// 插入子节点删除再插入时不能正常显示。修改:
//不知改后有没有错,先做个备忘
Tree.prototype.removeNode = function(node) {
// Recursively remove all descendants of +node+
this.unloadBranch(node);
// Remove
- 编程之美-电话号码对应英语单词
bylijinnan
java算法编程之美
import java.util.Arrays;
public class NumberToWord {
/**
* 编程之美 电话号码对应英语单词
* 题目:
* 手机上的拨号盘,每个数字都对应一些字母,比如2对应ABC,3对应DEF.........,8对应TUV,9对应WXYZ,
* 要求对一段数字,输出其代表的所有可能的字母组合
- jquery ajax读书笔记
chengxuyuancsdn
jQuery ajax
1、jsp页面
<%@ page language="java" import="java.util.*" pageEncoding="GBK"%>
<%
String path = request.getContextPath();
String basePath = request.getScheme()
- JWFD工作流拓扑结构解析伪码描述算法
comsci
数据结构算法工作活动J#
对工作流拓扑结构解析感兴趣的朋友可以下载附件,或者下载JWFD的全部代码进行分析
/* 流程图拓扑结构解析伪码描述算法
public java.util.ArrayList DFS(String graphid, String stepid, int j)
- oracle I/O 从属进程
daizj
oracle
I/O 从属进程
I/O从属进程用于为不支持异步I/O的系统或设备模拟异步I/O.例如,磁带设备(相当慢)就不支持异步I/O.通过使用I/O 从属进程,可以让磁带机模仿通常只为磁盘驱动器提供的功能。就好像支持真正的异步I/O 一样,写设备的进程(调用者)会收集大量数据,并交由写入器写出。数据成功地写出时,写入器(此时写入器是I/O 从属进程,而不是操作系统)会通知原来的调用者,调用者则会
- 高级排序:希尔排序
dieslrae
希尔排序
public void shellSort(int[] array){
int limit = 1;
int temp;
int index;
while(limit <= array.length/3){
limit = limit * 3 + 1;
- 初二下学期难记忆单词
dcj3sjt126com
englishword
kitchen 厨房
cupboard 厨柜
salt 盐
sugar 糖
oil 油
fork 叉;餐叉
spoon 匙;调羹
chopsticks 筷子
cabbage 卷心菜;洋白菜
soup 汤
Italian 意大利的
Indian 印度的
workplace 工作场所
even 甚至;更
Italy 意大利
laugh 笑
m
- Go语言使用MySQL数据库进行增删改查
dcj3sjt126com
mysql
目前Internet上流行的网站构架方式是LAMP,其中的M即MySQL, 作为数据库,MySQL以免费、开源、使用方便为优势成为了很多Web开发的后端数据库存储引擎。MySQL驱动Go中支持MySQL的驱动目前比较多,有如下几种,有些是支持database/sql标准,而有些是采用了自己的实现接口,常用的有如下几种:
http://code.google.c...o-mysql-dri
- git命令
shuizhaosi888
git
---------------设置全局用户名:
git config --global user.name "HanShuliang" //设置用户名
git config --global user.email "
[email protected]" //设置邮箱
---------------查看环境配置
git config --li
- qemu-kvm 网络 nat模式 (四)
haoningabc
kvmqemu
qemu-ifup-NAT
#!/bin/bash
BRIDGE=virbr0
NETWORK=192.168.122.0
GATEWAY=192.168.122.1
NETMASK=255.255.255.0
DHCPRANGE=192.168.122.2,192.168.122.254
TFTPROOT=
BOOTP=
function check_bridge()
- 不要让未来的你,讨厌现在的自己
jingjing0907
生活 奋斗 工作 梦想
故事one
23岁,他大学毕业,放弃了父母安排的稳定工作,独闯京城,在家小公司混个小职位,工作还算顺手,月薪三千,混了混,混走了一年的光阴。 24岁,有了女朋友,从二环12人的集体宿舍搬到香山民居,一间平房,二人世界,爱爱爱。偶然约三朋四友,打扑克搓麻将,日子快乐似神仙; 25岁,出了几次差,调了两次岗,薪水涨了不过百,生猛狂飙的物价让现实血淋淋,无力为心爱银儿购件大牌
- 枚举类型详解
一路欢笑一路走
enum枚举详解enumsetenumMap
枚举类型详解
一.Enum详解
1.1枚举类型的介绍
JDK1.5加入了一个全新的类型的”类”—枚举类型,为此JDK1.5引入了一个新的关键字enum,我们可以这样定义一个枚举类型。
Demo:一个最简单的枚举类
public enum ColorType {
RED
- 第11章 动画效果(上)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Eclipse中jsp、js文件编辑时,卡死现象解决汇总
ljf_home
eclipsejsp卡死js卡死
使用Eclipse编辑jsp、js文件时,经常出现卡死现象,在网上百度了N次,经过N次优化调整后,卡死现象逐步好转,具体那个方法起到作用,不太好讲。将所有用过的方法罗列如下:
1、取消验证
windows–>perferences–>validation
把 除了manual 下面的全部点掉,build下只留 classpath dependency Valida
- MySQL编程中的6个重要的实用技巧
tomcat_oracle
mysql
每一行命令都是用分号(;)作为结束
对于MySQL,第一件你必须牢记的是它的每一行命令都是用分号(;)作为结束的,但当一行MySQL被插入在PHP代码中时,最好把后面的分号省略掉,例如:
mysql_query("INSERT INTO tablename(first_name,last_name)VALUES('$first_name',$last_name')");
- zoj 3820 Building Fire Stations(二分+bfs)
阿尔萨斯
Build
题目链接:zoj 3820 Building Fire Stations
题目大意:给定一棵树,选取两个建立加油站,问说所有点距离加油站距离的最大值的最小值是多少,并且任意输出一种建立加油站的方式。
解题思路:二分距离判断,判断函数的复杂度是o(n),这样的复杂度应该是o(nlogn),即使常数系数偏大,但是居然跑了4.5s,也是醉了。 判断函数里面做了3次bfs,但是每次bfs节点最多