You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In addition to that, you are given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integers ai , ... , aj.
The input consists of several test cases. Each test case starts with a line containing two integers n and q (1 ≤ n, q ≤ 100000). The next line contains n integers a1 , ... , an (-100000 ≤ ai ≤ 100000, for each i ∈ {1, ..., n}) separated by spaces. You can assume that for each i ∈ {1, ..., n-1}: ai ≤ ai+1. The following q lines contain one query each, consisting of two integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the query.
The last test case is followed by a line containing a single 0.
For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range.
10 3 -1 -1 1 1 1 1 3 10 10 10 2 3 1 10 5 10 0
1 4 3
A naive algorithm may not run in time!
题意:
给出一个非降序的整数数组,你的任务是对于一系列询问,回答区间内出现最多的值的次数
思路:
因为这个数组是非降序的,所以可以把所有相等的元素组合起来用二元组表示,例如-1,1,1,2,2,2,4就可以表示为(-1,1)(1,2)(2,3)(4,1),其中(a,b)代表有b个连续的a。
val[i]代表第i段的数值
cnt[i]代表第i段连续的长度
num[i]表示第i个位置的数在那一段
lef[i],righ[i]分别表示第i段的左右端点位置
所求的最大值就是
1.从L到L所在的段的结束处的元素个数:righ[L]-L+1
2.从R到R所在的段的开始处的元素个数:R-lef[R]+1
3.中间第num[L]+1段到第num[R]-1段的cnt的最大值(RMQ)
答案就是1,2,3中的最大值
#include
#include
#include
#include
#include
#include