- 100天持续行动—Day01
Richard_DL
今天开始站着学习,发现效率大幅提升。把fast.ai的Lesson1的后半部分和Lesson2看完了。由于Keras版本和视频中的不一致,运行notebook时经常出现莫名其妙的错误,导致自己只动手实践了视频中的一小部分内容。为了赶时间,我打算先把与CNN相关的视频过一遍。然后尽快开始做自己的项目。明天继续加油,争取把Lesson3和Lesson4看完。
- 吴恩达深度学习笔记(30)-正则化的解释
极客Array
正则化(Regularization)深度学习可能存在过拟合问题——高方差,有两个解决方法,一个是正则化,另一个是准备更多的数据,这是非常可靠的方法,但你可能无法时时刻刻准备足够多的训练数据或者获取更多数据的成本很高,但正则化通常有助于避免过拟合或减少你的网络误差。如果你怀疑神经网络过度拟合了数据,即存在高方差问题,那么最先想到的方法可能是正则化,另一个解决高方差的方法就是准备更多数据,这也是非常
- 数据分析-24-时间序列预测之基于keras的VMD-LSTM和VMD-CNN-LSTM预测风速
皮皮冰燃
数据分析数据分析
文章目录1普通的LSTM模型1.1数据重采样1.2数据标准化1.3切分窗口1.4划分数据集1.5建立模型1.6预测效果2VMD-LSTM模型2.1VMD分解时间序列2.2对每一个IMF建立LSTM模型2.2.1IMF1—LSTM2.2.2IMF2-LSTM2.2.3统一代码2.3评估效果3CNN-LSTM模型3.1数据预处理3.2建立模型3.3效果预测4VMD-CNN-LSTM模型4.1VMD分解
- chatgpt赋能python:如何在Python中安装Keras库?
turensu
ChatGptpythonchatgptkeras计算机
如何在Python中安装Keras库?Keras是一个简单易用的神经网络库,由FrançoisChollet编写。它在Python编程语言中实现了深度学习的功能,可以使您更轻松地构建和试验不同类型的神经网络。如果您是一名Python开发人员,肯定会想知道如何在您的Python项目中安装Keras库。在本文中,我们将向您展示如何安装和配置Keras库。步骤1:安装Python要使用Keras库,您需
- Keras深度学习框架入门及实战指南
司莹嫣Maude
Keras深度学习框架入门及实战指南keraskeras-team/keras:是一个基于Python的深度学习库,它没有使用数据库。适合用于深度学习任务的开发和实现,特别是对于需要使用Python深度学习库的场景。特点是深度学习库、Python、无数据库。项目地址:https://gitcode.com/gh_mirrors/ke/keras一、项目介绍Keras简介Keras是一款高级神经网络
- 基于VGG的猫狗识别
卑微小鹿
tensorflowtensorflow
由于猫和狗的数据在这里,所以就做了一下分类的神经网络1、首先进行图像处理:importcsvimportglobimportosimportrandomos.environ['TF_CPP_MIN_LOG_LEVEL']='2'importtensorflowastffromtensorflowimportkerasfromtensorflow.kerasimportlayersimportnum
- TypeError: __init__() got an unexpected keyword argument ‘name‘
PinkAir
debugpythonleetcode
WhenIwroteacustomclassofKeras,Imetthiserror.Solution:changefromthesnippetbelowclasscustconv2d(keras.layers.Layer):def__init__(self):super(custconv2d,self).__init__()self.k=self.add_weight(shape=(1,),i
- ImportError: cannot import name ‘conv_utils‘ from ‘keras.utils‘
CheCacao
keras深度学习pythontensorflowtensorflow2人工智能
将fromkeras.utilsimportconv_utils改为fromtensorflow.python.keras.utilsimportconv_utilsImportError:nomodulenamed'tensorflow.keras.engine将fromkeras.engine.topologyimportLayer改为fromtensorflow.python.keras.l
- jupyter出错ImportError: cannot import name ‘np_utils‘ from ‘keras.utils‘ ,怎么解决?
七月初七淮水竹亭~
人工智能pythonjupyterkeras深度学习
文章前言此篇文章主要是记录一下我遇到的问题以及我是如何解决的,希望下次遇到类似问题可以很快解决。此外,也希望能帮助到大家。遇到的问题出错:ImportError:cannotimportname'np_utils'from'keras.utils',如图:如何解决首先我根据网上文章的一些提示,将fromkeras.utilsimportnp_utils换成了fromtensorflow.keras
- python3.7安装keras教程_python 3.7 安装 sklearn keras(tf.keras)
weixin_39641103
#1sklearn一般方法网上有很多教程,不再赘述。注意顺序是numpy+mkl,然后scipy的环境,scipy,然后sklearn#2anocondaanaconda原始的环境已经自带了sklearn,这里说一下新建环境(比如创建了一个tensorflow的环境),activatetensorflow2.0,然后condainstallsklearn即可,会帮你把各种需要的库都安装。#kera
- Python高层神经网络 API库之Keras使用详解
Rocky006
pythonkeras开发语言
概要随着深度学习在各个领域的广泛应用,许多开发者开始使用各种框架来构建和训练神经网络模型。Keras是一个高层神经网络API,使用Python编写,并能够运行在TensorFlow、CNTK和Theano之上。Keras旨在简化深度学习模型的构建过程,使得开发者能够更加专注于实验和研究。本文将详细介绍Keras库,包括其安装方法、主要特性、基本和高级功能,以及实际应用场景,帮助全面了解并掌握该库的
- 【Python机器学习】循环神经网络(RNN)——传递数据并训练
zhangbin_237
Python机器学习机器学习pythonrnn人工智能开发语言深度学习神经网络
与其他Keras模型一样,我们需要向.fit()方法传递数据,并告诉它我们希望训练多少个训练周期(epoch):model.fit(X_train,y_train,batch_size=batch_size,epochs=epochs,validation_data=(X_test,y_test))因为个人小电脑内存不足,所以吧maxlen参数改成了100重新运行。保存模型:model_struc
- AttributeError: ‘tuple‘ object has no attribute ‘shape‘
晓胡同学
keras深度学习tensorflow
AttributeError:‘tuple’objecthasnoattribute‘shape’在将keras代码改为tensorflow2代码的时候报了如下错误AttributeError:'tuple'objecthasnoattribute'shape'经过调查发现,损失函数写错了原来的是这样model.compile(loss=['binary_crossentropy'],optimi
- Tensorflow中Keras搭建神经网络六步法及参数详解 -- Tensorflow自学笔记12
青瓷看世界
tensorflow笔记人工智能深度学习神经网络
一.tf.keras搭建神经网络六步法1.import相关模块如importtensorflowastf。2.指定输入网络的训练集和测试集如指定训练集的输入x_train和标签y_train,测试集的输入x_test和标签y_test。3.逐层搭建网络结构model=tf.keras.models.Sequential()。4.在model.compile()中配置训练方法选择训练时使用的优化器、
- Tensorflow2.16中的Keras包含哪些层(layers)?层的功能及参数详细解释 -- TensorFlow自学笔记6
青瓷看世界
tensorflowtensorflowkeras人工智能
在Keras中,层(Layer)是构建神经网络的基本组件。Keras提供了多种类型的层,用于处理不同类型的输入数据和执行特定的数学操作。英文版可参考TensorFlow官方文档:Module:tf.keras.layers|TensorFlowv2.16.1一.层的分类1.基本网络层1.1.Dense层用于执行全连接操作;1.2.卷积层Conv1D、Conv2D、Conv3D层,用于执行一维、
- Tensorflow2 如何扩展现有数据集(缩放、随机旋转、水平翻转、平移等),从而提高模型的准确率 -- Tensorflow自学笔记14
青瓷看世界
tensorflow人工智能python
实际生活中的数据集,往往不是标准的数据,而是有倾斜角度、有旋转、有偏移的数据,为了提高数据集的真实性,提高模型预测的准确率,可以用ImageDataGenerator函数来扩展数据集importtensorflowastffromtensorflow.keras.preprocessing.imageimportImageDataGeneratorimage_gen_train=ImageData
- 中文车牌识别系统 `End-to-end-for-Chinese-Plate-Recognition` 教程
皮静滢Annette
中文车牌识别系统End-to-end-for-Chinese-Plate-Recognition教程End-to-end-for-chinese-plate-recognition基于u-net,cv2以及cnn的中文车牌定位,矫正和端到端识别软件,其中unet和cv2用于车牌定位和矫正,cnn进行车牌识别,unet和cnn都是基于tensorflow的keras实现项目地址:https://gi
- Keras-OCR:高效且易用的深度学习 OCR 库
吕真想Harland
Keras-OCR:高效且易用的深度学习OCR库keras-ocrApackagedandflexibleversionoftheCRAFTtextdetectorandKerasCRNNrecognitionmodel.项目地址:https://gitcode.com/gh_mirrors/ke/keras-ocr是一个基于Python的开源库,它利用[Keras](https和TensorFl
- Tensorflow、Keras、numpy对应参考版本(亲测有效)
不太复杂的小部分
tensorflowkerasnumpy
在运行需要tensorflow框架的代码时在版本问题上踩了很多坑,试了一个有效的版本如下:TensorFlow:2.6.0Keras:2.6.0numpy:1.19.5安装TensorFlow和Keras以及numpy库(用的是清华源安装速度更快),在安装版本的过程中如果已经安装了旧的版本会自动卸载(用pycharm终端安装是这样的),所以不需要卸载直接在终端执行下面的pipinstall就可以了
- 【机器学习】任务二:波士顿房价的数据与鸢尾花数据分析及可视化
FHYAAAX
机器学习机器学习数据分析人工智能
目录1.实验知识准备1.1NumPy1.2Matplotlib库1.3scikit-learn库:1.4TensorFlow1.5Keras2.波士顿房价的数据分析及可视化2.1波士顿房价的数据分析2.1.1步骤一:导入所需的模块和包2.1.2步骤二:从Keras库中加载波士顿房价数据集2.1.3步骤三:加载本地CSV数据集2.1.4步骤四:划分特征和目标变量2.1.5步骤五:划分训练集和测试集2
- T4周:猴痘病识别
KLaycurryifans
深度学习
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊|接辅导、项目定制Z.心得感受+知识点补充1.ModelCheckpoint讲解函数原型:tf.keras.callbacks.ModelCheckpoint(filepath,monitor='val_loss',verbose=0,save_best_only=False,save_weights_only=False,mode='a
- python利用深度学习(Keras)进行癫痫分类
一夜白头催人泪
python开发深度学习人工智能
一、癫痫介绍癫痫,即俗称“羊癫风”,是由多种病因引起的慢性脑功能障碍综合症,是仅次于脑血管病的第二大脑部疾病。癫痫发作的直接原因是脑部神经元反复地突发性过度放电所导致的间歇性中枢神经系统功能失调。临床上常表现为突然意识丧失、全身抽搐以及精神异常等。癫痫给患者带来巨大的痛苦和身心伤害,严重时甚至危及生命,儿童患者会影响到身体发育和智力发育。脑电图是研究癫痫发作特征的重要工具,它是一种无创性的生物物理
- 人人都能懂的机器学习——用Keras搭建人工神经网络02
苏小菁在编程
感知机1957年,FrankRosenblatt发明了感知机,它是最简单的人工神经网络之一。感知机是基于一个稍稍有些不同的人工神经元——阈值逻辑元(TLU)(见图1.4),有时也被称为线性阈值元(LTU)。这种神经元的输入和输出不再是二进制的布尔值,而是数字。每一个输入连接都与权重值相关联,TLU将各个输入加权取和然后将其带入一个阶跃函数,并输出结果:上述计算过程如下图1.4所示图1.4阈值逻辑单
- 【Python机器学习】卷积神经网络(CNN)的工具包
zhangbin_237
Python机器学习机器学习pythoncnn神经网络自然语言处理开发语言
Python是神经网络工具包最丰富的语言之一。两个主要的神经网络架构分别是Theano和TensorFlow。这两者的底层计算深度依赖C语言,不过它们都提供了强大的PythonAPI。Torch在Python里面也有一个对应的API是PyTorch。这些框架都是高度抽象的工具集,适用于从头构建模型。Python社区开发了一些第三方库来简化这些底层架构的使用。其中Keras在API的友好性和功能性方
- LSTM与文本生成
Jiang_Immortals
人工智能lstm人工智能rnn
当使用Python和Keras构建LSTM模型时,可以按照以下步骤进行简单的文本生成:准备数据集:首先,将文本数据集进行预处理,例如分词、去除标点符号、将文本转换为小写等。创建一个词汇表,将每个唯一的单词映射到一个整数值,以便进行向量化。将文本序列划分为输入序列和目标序列。例如,对于句子“IloveAI”,输入序列是“Ilove”,目标序列是“AI”。构建LSTM模型:导入必要的库,如Keras和
- 自然语言处理--Keras 实现LSTM生成文本
糯米君_
自然语言处理python深度学习nlplstm生成文本
令人兴奋的是,基于上一篇《keras实现LSTM字符级建模》的原理,使用LSTM我们可以根据之前文档出现过的字符来预测下一个字符,并且根据训练数据文本的特定的“风格”或“看法”生成新的文本。这很有趣,但我们将选择一个风格独特的人——威廉·莎士比亚(WilliamShakespeare),现根据他现有的作品来生成乍一看都有点儿像莎士比亚的作品的文本。fromnltk.corpusimportgute
- CNN+LSTM小目标物体追踪检测实现 完整代码数据可直接运行
计算机毕设论文
计算机毕设实战100例cnn人工智能深度学习小目标物体追踪追踪检测
视频讲解:CNN+LSTM小目标物体追踪检测实现_哔哩哔哩_bilibili项目效果:完整代码:importnumpyasnpimporttensorflowastffromtensorflow.keras.layersimportConv2D,MaxPooling2D,Flatten,LSTM,D
- Python在人工智能方面的应用
Bruce_Liuxiaowei
总结经验编程笔记python人工智能开发语言
Python在人工智能方面的应用Python是一种功能强大的编程语言,它广泛应用于各种领域中,包括人工智能(ArtificialIntelligence)领域。随着人工智能技术的发展和普及,Python变得越来越重要,因为它提供了许多有用的库、框架和工具,可以帮助开发者快速地构建智能系统。机器学习机器学习是人工智能领域中的一种关键技术,它可以让计算机自动地学习和改进。Python中的Keras和T
- 吴恩达深度学习笔记(24)-为什么要使用深度神经网络?
极客Array
为什么使用深层表示?(Whydeeprepresentations?)我们都知道深度神经网络能解决好多问题,其实并不需要很大的神经网络,但是得有深度,得有比较多的隐藏层,这是为什么呢?我们一起来看几个例子来帮助理解,为什么深度神经网络会很好用。首先,深度网络在计算什么?如果你在建一个人脸识别或是人脸检测系统,深度神经网络所做的事就是,当你输入一张脸部的照片,然后你可以把深度神经网络的第一层,当成一
- python 打包docker
风行傲天
pythondocker开发语言
python版本3.10使用flask项目打包1、创建requirements.txt列出项目所安装依赖,如:flaskstatsmodels==0.14.2neuralprophet==0.9.0keras==3.4.1scikit-learn==1.5.1tensorflow2、编写Dockerfile#拉取基础镜像FROMpython:3.10#镜像维护者的姓名和邮箱地址MAINTAINER
- 解线性方程组
qiuwanchi
package gaodai.matrix;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Test {
public static void main(String[] args) {
Scanner scanner = new Sc
- 在mysql内部存储代码
annan211
性能mysql存储过程触发器
在mysql内部存储代码
在mysql内部存储代码,既有优点也有缺点,而且有人倡导有人反对。
先看优点:
1 她在服务器内部执行,离数据最近,另外在服务器上执行还可以节省带宽和网络延迟。
2 这是一种代码重用。可以方便的统一业务规则,保证某些行为的一致性,所以也可以提供一定的安全性。
3 可以简化代码的维护和版本更新。
4 可以帮助提升安全,比如提供更细
- Android使用Asynchronous Http Client完成登录保存cookie的问题
hotsunshine
android
Asynchronous Http Client是android中非常好的异步请求工具
除了异步之外还有很多封装比如json的处理,cookie的处理
引用
Persistent Cookie Storage with PersistentCookieStore
This library also includes a PersistentCookieStore whi
- java面试题
Array_06
java面试
java面试题
第一,谈谈final, finally, finalize的区别。
final-修饰符(关键字)如果一个类被声明为final,意味着它不能再派生出新的子类,不能作为父类被继承。因此一个类不能既被声明为 abstract的,又被声明为final的。将变量或方法声明为final,可以保证它们在使用中不被改变。被声明为final的变量必须在声明时给定初值,而在以后的引用中只能
- 网站加速
oloz
网站加速
前序:本人菜鸟,此文研究总结来源于互联网上的资料,大牛请勿喷!本人虚心学习,多指教.
1、减小网页体积的大小,尽量采用div+css模式,尽量避免复杂的页面结构,能简约就简约。
2、采用Gzip对网页进行压缩;
GZIP最早由Jean-loup Gailly和Mark Adler创建,用于UNⅨ系统的文件压缩。我们在Linux中经常会用到后缀为.gz
- 正确书写单例模式
随意而生
java 设计模式 单例
单例模式算是设计模式中最容易理解,也是最容易手写代码的模式了吧。但是其中的坑却不少,所以也常作为面试题来考。本文主要对几种单例写法的整理,并分析其优缺点。很多都是一些老生常谈的问题,但如果你不知道如何创建一个线程安全的单例,不知道什么是双检锁,那这篇文章可能会帮助到你。
懒汉式,线程不安全
当被问到要实现一个单例模式时,很多人的第一反应是写出如下的代码,包括教科书上也是这样
- 单例模式
香水浓
java
懒汉 调用getInstance方法时实例化
public class Singleton {
private static Singleton instance;
private Singleton() {}
public static synchronized Singleton getInstance() {
if(null == ins
- 安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
AdyZhang
apachehttp server
安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
每次到这一步都很小心防它的端口冲突问题,结果,特意留出来的80端口就是不能用,烦。
解决方法确保几处:
1、停止IIS启动
2、把端口80改成其它 (譬如90,800,,,什么数字都好)
3、防火墙(关掉试试)
在运行处输入 cmd 回车,转到apa
- 如何在android 文件选择器中选择多个图片或者视频?
aijuans
android
我的android app有这样的需求,在进行照片和视频上传的时候,需要一次性的从照片/视频库选择多条进行上传
但是android原生态的sdk中,只能一个一个的进行选择和上传。
我想知道是否有其他的android上传库可以解决这个问题,提供一个多选的功能,可以使checkbox之类的,一次选择多个 处理方法
官方的图片选择器(但是不支持所有版本的androi,只支持API Level
- mysql中查询生日提醒的日期相关的sql
baalwolf
mysql
SELECT sysid,user_name,birthday,listid,userhead_50,CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')),CURDATE(), dayofyear( CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')))-dayofyear(
- MongoDB索引文件破坏后导致查询错误的问题
BigBird2012
mongodb
问题描述:
MongoDB在非正常情况下关闭时,可能会导致索引文件破坏,造成数据在更新时没有反映到索引上。
解决方案:
使用脚本,重建MongoDB所有表的索引。
var names = db.getCollectionNames();
for( var i in names ){
var name = names[i];
print(name);
- Javascript Promise
bijian1013
JavaScriptPromise
Parse JavaScript SDK现在提供了支持大多数异步方法的兼容jquery的Promises模式,那么这意味着什么呢,读完下文你就了解了。
一.认识Promises
“Promises”代表着在javascript程序里下一个伟大的范式,但是理解他们为什么如此伟大不是件简
- [Zookeeper学习笔记九]Zookeeper源代码分析之Zookeeper构造过程
bit1129
zookeeper
Zookeeper重载了几个构造函数,其中构造者可以提供参数最多,可定制性最多的构造函数是
public ZooKeeper(String connectString, int sessionTimeout, Watcher watcher, long sessionId, byte[] sessionPasswd, boolea
- 【Java命令三】jstack
bit1129
jstack
jstack是用于获得当前运行的Java程序所有的线程的运行情况(thread dump),不同于jmap用于获得memory dump
[hadoop@hadoop sbin]$ jstack
Usage:
jstack [-l] <pid>
(to connect to running process)
jstack -F
- jboss 5.1启停脚本 动静分离部署
ronin47
以前启动jboss,往各种xml配置文件,现只要运行一句脚本即可。start nohup sh /**/run.sh -c servicename -b ip -g clustername -u broatcast jboss.messaging.ServerPeerID=int -Djboss.service.binding.set=p
- UI之如何打磨设计能力?
brotherlamp
UIui教程ui自学ui资料ui视频
在越来越拥挤的初创企业世界里,视觉设计的重要性往往可以与杀手级用户体验比肩。在许多情况下,尤其对于 Web 初创企业而言,这两者都是不可或缺的。前不久我们在《右脑革命:别学编程了,学艺术吧》中也曾发出过重视设计的呼吁。如何才能提高初创企业的设计能力呢?以下是 9 位创始人的体会。
1.找到自己的方式
如果你是设计师,要想提高技能可以去设计博客和展示好设计的网站如D-lists或
- 三色旗算法
bylijinnan
java算法
import java.util.Arrays;
/**
问题:
假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,
您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳
子上进行这个动作,而且一次只能调换两个旗子。
网上的解法大多类似:
在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来
- 警告:No configuration found for the specified action: \'s
chiangfai
configuration
1.index.jsp页面form标签未指定namespace属性。
<!--index.jsp代码-->
<%@taglib prefix="s" uri="/struts-tags"%>
...
<s:form action="submit" method="post"&g
- redis -- hash_max_zipmap_entries设置过大有问题
chenchao051
redishash
使用redis时为了使用hash追求更高的内存使用率,我们一般都用hash结构,并且有时候会把hash_max_zipmap_entries这个值设置的很大,很多资料也推荐设置到1000,默认设置为了512,但是这里有个坑
#define ZIPMAP_BIGLEN 254
#define ZIPMAP_END 255
/* Return th
- select into outfile access deny问题
daizj
mysqltxt导出数据到文件
本文转自:http://hatemysql.com/2010/06/29/select-into-outfile-access-deny%E9%97%AE%E9%A2%98/
为应用建立了rnd的帐号,专门为他们查询线上数据库用的,当然,只有他们上了生产网络以后才能连上数据库,安全方面我们还是很注意的,呵呵。
授权的语句如下:
grant select on armory.* to rn
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('This example should only be run from a Web Brows
- 美国电影超短200句
dcj3sjt126com
电影
1. I see. 我明白了。2. I quit! 我不干了!3. Let go! 放手!4. Me too. 我也是。5. My god! 天哪!6. No way! 不行!7. Come on. 来吧(赶快)8. Hold on. 等一等。9. I agree。 我同意。10. Not bad. 还不错。11. Not yet. 还没。12. See you. 再见。13. Shut up!
- Java访问远程服务
dyy_gusi
httpclientwebservicegetpost
随着webService的崛起,我们开始中会越来越多的使用到访问远程webService服务。当然对于不同的webService框架一般都有自己的client包供使用,但是如果使用webService框架自己的client包,那么必然需要在自己的代码中引入它的包,如果同时调运了多个不同框架的webService,那么就需要同时引入多个不同的clien
- Maven的settings.xml配置
geeksun
settings.xml
settings.xml是Maven的配置文件,下面解释一下其中的配置含义:
settings.xml存在于两个地方:
1.安装的地方:$M2_HOME/conf/settings.xml
2.用户的目录:${user.home}/.m2/settings.xml
前者又被叫做全局配置,后者被称为用户配置。如果两者都存在,它们的内容将被合并,并且用户范围的settings.xml优先。
- ubuntu的init与系统服务设置
hongtoushizi
ubuntu
转载自:
http://iysm.net/?p=178 init
Init是位于/sbin/init的一个程序,它是在linux下,在系统启动过程中,初始化所有的设备驱动程序和数据结构等之后,由内核启动的一个用户级程序,并由此init程序进而完成系统的启动过程。
ubuntu与传统的linux略有不同,使用upstart完成系统的启动,但表面上仍维持init程序的形式。
运行
- 跟我学Nginx+Lua开发目录贴
jinnianshilongnian
nginxlua
使用Nginx+Lua开发近一年的时间,学习和实践了一些Nginx+Lua开发的架构,为了让更多人使用Nginx+Lua架构开发,利用春节期间总结了一份基本的学习教程,希望对大家有用。也欢迎谈探讨学习一些经验。
目录
第一章 安装Nginx+Lua开发环境
第二章 Nginx+Lua开发入门
第三章 Redis/SSDB+Twemproxy安装与使用
第四章 L
- php位运算符注意事项
home198979
位运算PHP&
$a = $b = $c = 0;
$a & $b = 1;
$b | $c = 1
问a,b,c最终为多少?
当看到这题时,我犯了一个低级错误,误 以为位运算符会改变变量的值。所以得出结果是1 1 0
但是位运算符是不会改变变量的值的,例如:
$a=1;$b=2;
$a&$b;
这样a,b的值不会有任何改变
- Linux shell数组建立和使用技巧
pda158
linux
1.数组定义 [chengmo@centos5 ~]$ a=(1 2 3 4 5) [chengmo@centos5 ~]$ echo $a 1 一对括号表示是数组,数组元素用“空格”符号分割开。
2.数组读取与赋值 得到长度: [chengmo@centos5 ~]$ echo ${#a[@]} 5 用${#数组名[@或
- hotspot源码(JDK7)
ol_beta
javaHotSpotjvm
源码结构图,方便理解:
├─agent Serviceab
- Oracle基本事务和ForAll执行批量DML练习
vipbooks
oraclesql
基本事务的使用:
从账户一的余额中转100到账户二的余额中去,如果账户二不存在或账户一中的余额不足100则整笔交易回滚
select * from account;
-- 创建一张账户表
create table account(
-- 账户ID
id number(3) not null,
-- 账户名称
nam