快速傅里叶变换(Fast-Fourier Transform,FFT)

数学定义:

(详细参考:https://www.baidu.com/link?url=oYAuG2o-pia_U3DlF5n_MJZyE5YKfaVRUHTTDbM1FwM_kDTjGCxKpw_PbOK70jE2geVioprSVyPTTQuLwN-IhMH8NREmWSDnmcfQEY8w0kq&wd=&eqid=8244c46a0009451a000000035c0e2c39)

有限长序列可以通过离散傅里叶变换(DFT)将其频域也离散化成有限长 序列.但其计算量太大,很难实时地处理问题,因此引出了快速傅里叶变换 (FFT).  1965 年,Cooley 和 Tukey 提出了计算离散傅里叶变换(DFT)的快 速算法,将 DFT 的运算量减少了几个数量级。从此,对快速傅里叶变换(FFT) 算法的研究便不断深入,数字信号处理这门新兴学科也随 FFT 的出现和发 展而迅速发展。根据对序列分解与选取方法的不同而产生了 FFT 的多种算 法,基本算法是基2DIT 和基2DIF。FFT 在离散傅里叶反变换、线性卷积 和线性相关等方面也有重要应用。

快速傅里叶变换(FFT是计算离散傅里叶变换(DFT快速算法。

DFT 的定义式为:

快速傅里叶变换(Fast-Fourier Transform,FFT)_第1张图片快速傅里叶变换(Fast-Fourier Transform,FFT)_第2张图片

 

代码示例:

%fft示例:产生60Hz和150Hz带噪声的信号源,并用傅里叶变换方法查找主频信号
%产生带噪声的声源信号,并提取离散信号
t=0:0.001:0.6;
%噪声信号的主频是60Hz和150Hz
x=sin(2*pi*60*t)+sin(2*pi*150*t);
y=x+2*randn(size(t));
plot(1000*t(1:50),y(1:50))
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('time(ms)')
grid on;

%进行512点的快速傅里叶变换
Y=fft(y,512);
%功率谱测量计算
Pyy=Y.*conj(Y)/512;
f=1000*(0:256)/512;
%绘制频谱图形
figure;
plot(f,Pyy(1:257))
title('Frequency content of y')
xlabel('frequency(Hz)')
grid on;

  

 

转载于:https://www.cnblogs.com/Ann21/p/10099331.html

你可能感兴趣的:(快速傅里叶变换(Fast-Fourier Transform,FFT))