Matlab 常用图像函数

一 图像的读写

1 imread
imread函数用于读入各种图像文件,如:a=imread('e:\w01.tif')
注:计算机E盘上要有w01相应的.tif文件。
2 imwrite
imwrite函数用于写入图像文件,如:imwrite(a,'e:\w02.tif',’tif’)
3 imfinfo
imfinfo函数用于读取图像文件的有关信息,如:imfinfo('e:\w01.tif')
二 图像的显示
1 image
image函数是MATLAB提供的最原始的图像显示函数,如:
a=[1,2,3,4;4,5,6,7;8,9,10,11,12];
image(a);
2 imshow
imshow函数用于图像文件的显示,如:
i=imread('e:\w01.tif');
imshow(i);
3 colorbar
colorbar函数用显示图像的颜色条,如:
i=imread('e:\w01.tif');
imshow(i);
colorbar;
4 figure
figure函数用于设定图像显示窗口,如:figure(1); /figure(2);
三 图像的变换
1 fft2
fft2函数用于数字图像的二维傅立叶变换,如:
i=imread('e:\w01.tif');
j=fft2(i);
2 ifft2
ifft2函数用于数字图像的二维傅立叶反变换,如:
i=imread('e:\w01.tif');
j=fft2(i);
k=ifft2(j);
3 利用fft2计算二维卷积
利用fft2函数可以计算二维卷积,如:
a=[8,1,6;3,5,7;4,9,2];
b=[1,1,1;1,1,1;1,1,1];
a(8,8)=0;
b(8,8)=0;
c=ifft2(fft2(a).*fft2(b));
c=c(1:5,1:5);
利用conv2(二维卷积函数)校验, 如:
a=[8,1,6;3,5,7;4,9,2];
b=[1,1,1;1,1,1;1,1,1];
c=conv2(a,b);
四 模拟噪声生成函数和预定义滤波器
1 imnoise
imnoise函数用于对图像生成模拟噪声,如:
i=imread('e:\w01.tif');
j=imnoise(i,'gaussian',0,0.02);%模拟高斯噪声
2 fspecial
fspecial函数用于产生预定义滤波器,如:
h=fspecial('sobel');%sobel水平边缘增强滤波器
h=fspecial('gaussian');%高斯低通滤波器
h=fspecial('laplacian');%拉普拉斯滤波器
h=fspecial('log');%高斯拉普拉斯(LoG)滤波器
h=fspecial('average');%均值滤波器
五 图像的增强
1 直方图
imhist函数用于数字图像的直方图显示,如:
i=imread('e:\w01.tif');
imhist(i);
2 直方图均化
histeq函数用于数字图像的直方图均化,如:
i=imread('e:\w01.tif');
j=histeq(i);
3 对比度调整
imadjust函数用于数字图像的对比度调整,如:
i=imread('e:\w01.tif');
j=imadjust(i,[0.3,0.7],[]);
4 对数变换
log函数用于数字图像的对数变换,如:
i=imread('e:\w01.tif');
j=double(i);
k=log(j);
5 基于卷积的图像滤波函数
filter2函数用于图像滤波,如:
i=imread('e:\w01.tif');
h=[1,2,1;0,0,0;-1,-2,-1];
j=filter2(h,i);
6 线性滤波
利用二维卷积conv2滤波, 如:
i=imread('e:\w01.tif');
h=[1,1,1;1,1,1;1,1,1];
h=h/9;
j=conv2(i,h);
7 中值滤波
medfilt2函数用于图像的中值滤波,如:
i=imread('e:\w01.tif');
j=medfilt2(i);
8 锐化
(1)利用Sobel算子锐化图像, 如:
i=imread('e:\w01.tif');
h=[1,2,1;0,0,0;-1,-2,-1];%Sobel算子
j=filter2(h,i);
(2)利用拉氏算子锐化图像, 如:
i=imread('e:\w01.tif');
j=double(i);
h=[0,1,0;1,-4,0;0,1,0];%拉氏算子
k=conv2(j,h,'same');
m=j-k;
六 举例
二维傅立叶变换和二维傅立叶反变换:
i=imread('e:\w01.tif');
figure(1);
imshow(i);
colorbar;
j=fft2(i);
k=fftshift(j);
figure(2);
l=log(abs(k));
imshow(l,[]);
colorbar
n=ifft2(j)/255;
figure(3);
imshow(n);
colorbar;

Matlab中图像函数大全

图像增强

1. 直方图均衡化的 Matlab 实现

1.1 imhist 函数
功能:计算和显示图像的色彩直方图
格式:imhist(I,n)
        imhist(X,map)
说明:imhist(I,n) 其中,n 为指定的灰度级数目,缺省值为256;imhist(X,map) 就算和显示索引色图像 X 的直方图,map 为调色板。用

stem(x,counts) 同样可以显示直方图。

1.2 imcontour 函数
功能:显示图像的等灰度值图
格式:imcontour(I,n),imcontour(I,v)
说明:n 为灰度级的个数,v 是有用户指定所选的等灰度级向量。

1.3 imadjust 函数
功能:通过直方图变换调整对比度
格式:J=imadjust(I,[low high],[bottom top],gamma)
        newmap=imadjust(map,[low high],[bottom top],gamma)
说明:J=imadjust(I,[low high],[bottom top],gamma) 其中,gamma 为校正量r,[low high] 为原图像中要变换的灰度范围,[bottom top]

指定了变换后的灰度范围;newmap=imadjust(map,[low high],[bottom top],gamma) 调整索引色图像的调色板 map 。此时若 [low high] 和

[bottom top] 都为2×3的矩阵,则分别调整 R、G、B 3个分量。

1.4 histeq 函数
功能:直方图均衡化
格式:J=histeq(I,hgram)
        J=histeq(I,n)
        [J,T]=histeq(I,...)
        newmap=histeq(X,map,hgram)
        newmap=histeq(X,map)
        [new,T]=histeq(X,...)
说明:J=histeq(I,hgram) 实现了所谓“直方图规定化”,即将原是图象 I 的直方图变换成用户指定的向量 hgram 。hgram 中的每一个元素

都在 [0,1] 中;J=histeq(I,n) 指定均衡化后的灰度级数 n ,缺省值为 64;[J,T]=histeq(I,...) 返回从能将图像 I 的灰度直方图变换成

图像 J 的直方图的变换 T ;newmap=histeq(X,map) 和 [new,T]=histeq(X,...) 是针对索引色图像调色板的直方图均衡。

2. 噪声及其噪声的 Matlab 实现
        imnoise 函数
格式:J=imnoise(I,type)
        J=imnoise(I,type,parameter)
说明:J=imnoise(I,type) 返回对图像 I 添加典型噪声后的有噪图像 J ,参数 type 和 parameter 用于确定噪声的类型和相应的参数。

3. 图像滤波的 Matlab 实现

3.1 conv2 函数
功能:计算二维卷积
格式:C=conv2(A,B)
        C=conv2(Hcol,Hrow,A)
        C=conv2(...,'shape')
说明:对于 C=conv2(A,B) ,conv2 的算矩阵 A 和 B 的卷积,若 [Ma,Na]=size(A), [Mb,Nb]=size(B), 则 size(C)=[Ma+Mb-1,Na+Nb-1];

C=conv2(Hcol,Hrow,A) 中,矩阵 A 分别与 Hcol 向量在列方向和 Hrow 向量在行方向上进行卷积;C=conv2(...,'shape') 用来指定 conv2

返回二维卷积结果部分,参数 shape 可取值如下:
        》full 为缺省值,返回二维卷积的全部结果;
        》same 返回二维卷积结果中与 A 大小相同的中间部分;
        valid 返回在卷积过程中,未使用边缘补 0 部分进行计算的卷积结果部分,当 size(A)>size(B) 时,size(C)=[Ma-Mb+1,Na-Nb+1]



3.2 conv 函数
功能:计算多维卷积
格式:与 conv2 函数相同

3.3 filter2函数
功能:计算二维线型数字滤波,它与函数 fspecial 连用
格式:Y=filter2(B,X)
        Y=filter2(B,X,'shape')
说明:对于 Y=filter2(B,X) ,filter2 使用矩阵 B 中的二维 FIR 滤波器对数据 X 进行滤波,结果 Y 是通过二维互相关计算出来的,其大

小与 X 一样;对于 Y=filter2(B,X,'shape') ,filter2 返回的 Y 是通过二维互相关计算出来的,其大小由参数 shape 确定,其取值如下


        》full 返回二维相关的全部结果,size(Y)>size(X);
        》same 返回二维互相关结果的中间部分,Y 与 X 大小相同;
        》valid 返回在二维互相关过程中,未使用边缘补 0 部分进行计算的结果部分,有 size(Y)
3.4 fspecial 函数
功能:产生预定义滤波器
格式:H=fspecial(type)
        H=fspecial('gaussian',n,sigma)         高斯低通滤波器
        H=fspecial('sobel')                          Sobel 水平边缘增强滤波器
        H=fspecial('prewitt')                       Prewitt 水平边缘增强滤波器
        H=fspecial('laplacian',alpha)             近似二维拉普拉斯运算滤波器
        H=fspecial('log',n,sigma)                 高斯拉普拉斯(LoG)运算滤波器
        H=fspecial('average',n)                   均值滤波器
        H=fspecial('unsharp',alpha)             模糊对比增强滤波器
说明:对于形式 H=fspecial(type) ,fspecial 函数产生一个由 type 指定的二维滤波器 H ,返回的 H 常与其它滤波器搭配使用。

4. 彩色增强的 Matlab 实现
4.1 imfilter函数
功能:真彩色增强
格式:B=imfilter(A,h)
说明:将原始图像 A 按指定的滤波器 h 进行滤波增强处理,增强后的图像 B 与 A 的尺寸和类型相同

图像的变换
1. 离散傅立叶变换的 Matlab 实现
      Matlab 函数 fft、fft2 和 fftn 分别可以实现一维、二维和 N 维 DFT 算法;而函数 ifft、ifft2 和 ifftn 则用来计算反 DFT 。

这些函数的调用格式如下:
         A=fft(X,N,DIM)
      其中,X 表示输入图像;N 表示采样间隔点,如果 X 小于该数值,那么 Matlab 将会对 X 进行零填充,否则将进行截取,使之长度为

N ;DIM 表示要进行离散傅立叶变换。

        A=fft2(X,MROWS,NCOLS)
其中,MROWS 和 NCOLS 指定对 X 进行零填充后的 X 大小。

        A=fftn(X,SIZE)
其中,SIZE 是一个向量,它们每一个元素都将指定 X 相应维进行零填充后的长度。

      函数 ifft、ifft2 和 ifftn的调用格式于对应的离散傅立叶变换函数一致。

例子:图像的二维傅立叶频谱

% 读入原始图像
I=imread('lena.bmp');
imshow(I)
% 求离散傅立叶频谱
J=fftshift(fft2(I));
figure;
imshow(log(abs(J)),[8,10])


2. 离散余弦变换的 Matlab 实现

2.1. dCT2 函数
功能:二维 DCT 变换
格式:B=dct2(A)
        B=dct2(A,m,n)
        B=dct2(A,[m,n])
说明:B=dct2(A) 计算 A 的 DCT 变换 B ,A 与 B 的大小相同;B=dct2(A,m,n) 和 B=dct2(A,[m,n]) 通过对 A 补 0 或剪裁,使 B 的大

小为 m×n。

2.2. dict2 函数
功能:DCT 反变换
格式:B=idct2(A)
        B=idct2(A,m,n)
        B=idct2(A,[m,n])
说明:B=idct2(A) 计算 A 的 DCT 反变换 B ,A 与 B 的大小相同;B=idct2(A,m,n) 和 B=idct2(A,[m,n]) 通过对 A 补 0 或剪裁,使 B

的大小为 m×n。

2.3. dctmtx函数
功能:计算 DCT 变换矩阵
格式:D=dctmtx(n)
说明:D=dctmtx(n) 返回一个 n×n 的 DCT 变换矩阵,输出矩阵 D 为 double 类型。


3. 图像小波变换的 Matlab 实现

3.1 一维小波变换的 Matlab 实现
(1) dwt 函数
功能:一维离散小波变换
格式:[cA,cD]=dwt(X,'wname')
        [cA,cD]=dwt(X,Lo_D,Hi_D)
说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname' 对信号 X 进行分解,cA、cD

分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2) idwt 函数
功能:一维离散小波反变换
格式:X=idwt(cA,cD,'wname')
        X=idwt(cA,cD,Lo_R,Hi_R)
        X=idwt(cA,cD,'wname',L)
        X=idwt(cA,cD,Lo_R,Hi_R,L)
说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
        'wname' 为所选的小波函数
        X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。
        X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。

3.2 二维小波变换的 Matlab 实现

          二维小波变换的函数
-------------------------------------------------
     函数名                函数功能
---------------------------------------------------
     dwt2            二维离散小波变换
   wavedec2       二维信号的多层小波分解
     idwt2           二维离散小波反变换
   waverec2        二维信号的多层小波重构
   wrcoef2          由多层小波分解重构某一层的分解信号
   upcoef2          由多层小波分解重构近似分量或细节分量
   detcoef2         提取二维信号小波分解的细节分量
   appcoef2        提取二维信号小波分解的近似分量
   upwlev2         二维小波分解的单层重构
   dwtpet2         二维周期小波变换
   idwtper2        二维周期小波反变换
-------------------------------------------------------------

(1) wcodemat 函数
功能:对数据矩阵进行伪彩色编码
格式:Y=wcodemat(X,NB,OPT,ABSOL)
        Y=wcodemat(X,NB,OPT)
        Y=wcodemat(X,NB)
        Y=wcodemat(X)
说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;
       OPT 指定了编码的方式(缺省值为 'mat'),即:
                 OPT='row' ,按行编码
                 OPT='col' ,按列编码
                 OPT='mat' ,按整个矩阵编码
       ABSOL 是函数的控制参数(缺省值为 '1'),即:
                 ABSOL=0 时,返回编码矩阵
                 ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)

(2) dwt2 函数
功能:二维离散小波变换
格式:[cA,cH,cV,cD]=dwt2(X,'wname')
        [cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)
说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数 'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分

量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分

解信号 X 。

(3) wavedec2 函数
功能:二维信号的多层小波分解
格式:[C,S]=wavedec2(X,N,'wname')
        [C,S]=wavedec2(X,N,Lo_D,Hi_D)
说明:[C,S]=wavedec2(X,N,'wname') 使用小波基函数 'wname' 对二维信号 X 进行 N 层分解;[C,S]=wavedec2(X,N,Lo_D,Hi_D) 使用指定

的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。

(4) idwt2 函数
功能:二维离散小波反变换
格式:X=idwt2(cA,cH,cV,cD,'wname')
        X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R)
        X=idwt2(cA,cH,cV,cD,'wname',S)
        X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)
说明:X=idwt2(cA,cH,cV,cD,'wname') 由信号小波分解的近似信号 cA 和细节信号 cH、cH、cV、cD 经小波反变换重构原信号 X

;X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R) 使用指定的重构低通和高通滤波器 Lo_R 和 Hi_R 重构原信号 X ;X=idwt2(cA,cH,cV,cD,'wname',S)

和 X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S) 返回中心附近的 S 个数据点。

(5) waverec2 函数
说明:二维信号的多层小波重构
格式:X=waverec2(C,S,'wname')
        X=waverec2(C,S,Lo_R,Hi_R)
说明:X=waverec2(C,S,'wname') 由多层二维小波分解的结果 C、S 重构原始信号 X ,'wname'

为使用的小波基函数;X=waverec2(C,S,Lo_R,Hi_R) 使用重构低通和高通滤波器 Lo_R 和 Hi_R 重构原信号。

图像处理工具箱
1. 图像和图像数据
   缺省情况下,MATLAB将图像中的数据存储为双精度类型(double),64位浮点
数,所需存储量很大;MATLAB还支持另一种类型无符号整型(uint8),即图像矩
阵中每个数据占用1个字节。
   在使用MATLAB工具箱时,一定要注意函数所要求的参数类型。另外,uint8
与double两种类型数据的值域不同,编程需注意值域转换。
          从uint8到double的转换
   ---------------------------------------------
       图像类型        MATLAB语句
   ---------------------------------------------
     索引色             B=double(A)+1
     索引色或真彩色 B=double(A)/255
     二值图像          B=double(A)
   ---------------------------------------------

         从double到uint8的转换
   ---------------------------------------------
       图像类型        MATLAB语句
   ---------------------------------------------
    索引色               B=uint8(round(A-1))
    索引色或真彩色    B=uint8(round(A*255))
    二值图像            B=logical(uint8(round(A)))
   ---------------------------------------------

2. 图像处理工具箱所支持的图像类型

2.1 真彩色图像
    R、G、B三个分量表示一个像素的颜色。如果要读取图像中(100,50)处的像素值,
可查看三元数据(100,50,1:3)。
    真彩色图像可用双精度存储,亮度值范围是[0,1];比较符合习惯的存储方法是用无
符号整型存储,亮度值范围[0,255]
  
2.2 索引色图像
   包含两个结构,一个是调色板,另一个是图像数据矩阵。调色板是一个有3列和若干行
的色彩映象矩阵,矩阵每行代表一种颜色,3列分别代表红、绿、蓝色强度的双精度数。
  
   注意:MATLAB中调色板色彩强度[0,1],0代表最暗,1代表最亮。
          常用颜色的RGB值
   --------------------------------------------
    颜色    R   G   B      颜色    R   G   B
   --------------------------------------------
     黑     0   0   1      洋红    1   0   1
     白     1   1   1      青蓝    0   1   1
     红     1   0   0      天蓝 0.67 0   1
     绿     0   1   0      橘黄    1 0.5 0
     蓝     0   0   1      深红   0.5 0   0
     黄     1   1   0       灰    0.5 0.5 0.5      
   --------------------------------------------
         产生标准调色板的函数
   -------------------------------------------------
    函数名       调色板
   -------------------------------------------------
     Hsv       色彩饱和度,以红色开始,并以红色结束
     Hot       黑色-红色-黄色-白色
     Cool      青蓝和洋红的色度
     Pink      粉红的色度
     Gray      线型灰度
     Bone      带蓝色的灰度
     Jet        Hsv的一种变形,以蓝色开始,以蓝色结束
     Copper    线型铜色度
     Prim       三棱镜,交替为红、橘黄、黄、绿和天蓝
     Flag       交替为红、白、蓝和黑
--------------------------------------------------
   缺省情况下,调用上述函数灰产生一个64×3的调色板,用户也可指定调色板大小。
  
   索引色图像数据也有double和uint8两种类型。
   当图像数据为double类型时,值1代表调色板中的第1行,值2代表第2行……
   如果图像数据为uint8类型,0代表调色板的第一行,,值1代表第2行……

2.3 灰度图像
   存储灰度图像只需要一个数据矩阵。
   数据类型可以是double,[0,1];也可以是uint8,[0,255]

2.4 二值图像
   二值图像只需一个数据矩阵,每个像素只有两个灰度值,可以采用uint8或double类型存储。
   MATLAB工具箱中以二值图像作为返回结果的函数都使用uint8类型。

2.5 图像序列
   MATLAB工具箱支持将多帧图像连接成图像序列。
   图像序列是一个4维数组,图像帧的序号在图像的长、宽、颜色深度之后构成第4维。
   分散的图像也可以合并成图像序列,前提是各图像尺寸必须相同,若是索引色图像,
调色板也必须相同。
   可参考cat()函数    A=cat(4,A1,A2,A3,A4,A5)

3. MATLAB图像类型转换
         图像类型转换函数
   ---------------------------------------------------------------------------
     函数名                      函数功能
   ---------------------------------------------------------------------------
     dither       图像抖动,将灰度图变成二值图,或将真彩色图像抖动成索引色图像
    gray2ind    将灰度图像转换成索引图像
    grayslice    通过设定阈值将灰度图像转换成索引色图像
     im2bw      通过设定亮度阈值将真彩色、索引色、灰度图转换成二值图
    ind2gray    将索引色图像转换成灰度图像
    ind2rgb      将索引色图像转换成真彩色图像
    mat2gray   将一个数据矩阵转换成一副灰度图
    rgb2gray    将一副真彩色图像转换成灰度图像
    rgb2ind      将真彩色图像转换成索引色图像
   ----------------------------------------------------------------------------

4. 图像文件的读写和查询

4.1 图形图像文件的读取
   利用函数imread()可完成图形图像文件的读取,语法:

     A=imread(filename,fmt)
     [X,map]=imread(filename,fmt)
     [...]=imread(filename)
     [...]=imread(filename,idx) (只对TIF格式的文件)
     [...]=imread(filename,ref) (只对HDF格式的文件)

   通常,读取的大多数图像均为8bit,当这些图像加载到内存中时,Matlab就将其存放
在类uint8中。此为Matlab还支持16bit的PNG和TIF图像,当读取这类文件时,Matlab就将
其存贮在uint16中。

   注意:对于索引图像,即使图像阵列的本身为类uint8或类uint16,imread函数仍将
颜色映象表读取并存贮到一个双精度的浮点类型的阵列中。

4.2 图形图像文件的写入
   使用imwrite函数,语法如下:

   imwrite(A,filename,fmt)
   imwrite(X,map,filename,fmt)
   imwrite(...,filename)
   imwrite(...,parameter,value)

   当利用imwrite函数保存图像时,Matlab缺省的方式是将其简化道uint8的数据格式。

4.3 图形图像文件信息的查询   imfinfo()函数

5. 图像文件的显示

5.1 索引图像及其显示

   方法一:
          image(X)
          colormap(map)

   方法二:
          imshow(X,map)

5.2 灰度图像及其显示
   Matlab 7.0 中,要显示一副灰度图像,可以调用函数 imshow 或 imagesc (即
imagescale,图像缩放函数)

   (1) imshow 函数显示灰度图像
    使用 imshow(I)    或 使用明确指定的灰度级书目:imshow(I,32)
   
    由于Matlab自动对灰度图像进行标度以适合调色板的范围,因而可以使用自定义
大小的调色板。其调用格式如下:
           imshow(I,[low,high])
    其中,low 和 high 分别为数据数组的最小值和最大值。

   (2) imagesc 函数显示灰度图像
   下面的代码是具有两个输入参数的 imagesc 函数显示一副灰度图像
       imagesc(1,[0,1]);
       colormap(gray);
    imagesc 函数中的第二个参数确定灰度范围。灰度范围中的第一个值(通常是0),
对应于颜色映象表中的第一个值(颜色),第二个值(通常是1)则对应与颜色映象表
中的最后一个值(颜色)。灰度范围中间的值则线型对应与颜色映象表中剩余的值(颜色)。

    在调用 imagesc 函数时,若只使用一个参数,可以用任意灰度范围显示图像。在该
调用方式下,数据矩阵中的最小值对应于颜色映象表中的第一个颜色值,数据矩阵中的最大
值对应于颜色映象表中的最后一个颜色值。

5.3 RGB 图像及其显示
   (1) image(RGB)
   不管RGB图像的类型是double浮点型,还是 uint8 或 uint16 无符号整数型,Matlab都
能通过 image 函数将其正确显示出来。

   RGB8 = uint8(round(RGB64×255)); % 将 double 浮点型转换为 uint8 无符号整型
   RGB64 = double(RGB8)/255;            % 将 uint8 无符号整型转换为 double 浮点型
   RGB16 = uint16(round(RGB64×65535)); % 将 double 浮点型转换为 uint16 无符号整型
   RGB64 = double(RGB16)/65535;      % 将 uint16 无符号整型转换为 double 浮点型

   (2) imshow(RGB) 参数是一个 m×n×3 的数组

5.4 二进制图像及其显示

   (1) imshow(BW)
   在 Matlab 7.0 中,二进制图像是一个逻辑类,仅包括 0 和 1 两个数值。像素 0 显示
为黑色,像素 1 显示为白色。
   显示时,也可通过NOT(~)命令,对二进制图象进行取反,使数值 0 显示为白色;1 显示
为黑色。
   例如: imshow(~BW)

   (2) 此外,还可以使用一个调色板显示一副二进制图像。如果图形是 uint8 数据类型,
则数值 0 显示为调色板的第一个颜色,数值 1 显示为第二个颜色。
   例如: imshow(BW,[1 0 0;0 0 1])  

5.5 直接从磁盘显示图像
   可使用一下命令直接进行图像文件的显示:
        imshow filename
   其中,filename 为要显示的图像文件的文件名。

   如果图像是多帧的,那么 imshow 将仅显示第一帧。但需注意,在使用这种方式时,图像
数据没有保存在Matlab 7.0 工作平台。如果希望将图像装入工作台中,需使用 getimage 函
数,从当前的句柄图形图像对象中获取图像数据,
   命令形式为: rgb = getimage;

bwlabel
功能:
标注二进制图像中已连接的部分。
L = bwlabel(BW,n)
[L,num] = bwlabel(BW,n)

isbw
功能:
判断是否为二进制图像。
语法:
flag = isbw(A)
相关命令:
isind, isgray, isrgb
74.isgray
功能:
判断是否为灰度图像。
语法:
flag = isgray(A)
相关命令:
isbw, isind, isrgb

11.bwselect
功能:
在二进制图像中选择对象。
语法:
BW2 = bwselect(BW1,c,r,n)
BW2 = bwselect(BW1,n)
[BW2,idx] = bwselect(...)
举例
BW1 = imread('text.tif');
c = [16 90 144];
r = [85 197 247];
BW2 = bwselect(BW1,c,r,4);
imshow(BW1)
figure, imshow(BW2)

47.im2bw
功能:
转换图像为二进制图像。
语法:
BW = im2bw(I,level)
BW = im2bw(X,map,level)
BW = im2bw(RGB,level)
举例
load trees
BW = im2bw(X,map,0.4);
imshow(X,map)

Matlab中如何读出写入图像文件以及对图像的简单处理

MATLAB图像处理工具箱支持四种基本图像类型:索引图像、灰度图像、二进制图像和RGB图像。MATLAB直接从图像文件中读取的图像为RGB图像。它存储在三维数组中。这个三维数组有三个面,依次对应于红(Red)、绿(Green)、蓝(Blue)三种颜色,而面中的数据则分别是这三种颜色的强度值,面中的元素对应于图像中的像素点。设所得矩阵为X三维矩阵(256,256,3) ,X(:,:,1)代表红颜色的2维矩阵 X(:,:,2)代表绿颜色的2维矩阵, X(:,:,3)代表兰颜色的2维矩阵。[X, map]=imread('34.bmp');r=double(X(:,:,1)); %r是256 x 256的红色信息矩阵g=double(X(:,:,2)); %g是256 x 256的绿色信息矩阵b=double(X(:,:,3)); %b是256 x 256的兰色信息矩阵
索引图像数据包括图像矩阵X与颜色图数组map,其中颜色图map是按图像中颜色值进行排序后的数组。对于每个像素,图像矩阵X包含一个值,这个值就是颜色图数组map中的索引。颜色图map为m×3双精度矩阵,各行分别指定红、绿、蓝(R、G、B)单色值,map=[RGB],R、G、B为值域为[0,1]的实数值,m为索引图像包含的像素个数。

对于相同的数据,采用uint8格式比双精度格式节省内存空间,从而更经济。在MATLAB中
如果索引图像的颜色图小于256行,则它的图像矩阵以uint8格式存储,否则以双精度格式存储。
一:imread:从图像文件夹中读取图像
A = imread(FILENAME,FMT) 读取图像到A,如果文件是包含一灰度图像,A是一二维矩阵,如果文件是包含一真彩色图像(RGB),A是一三维矩阵(M-by-N-by-3)。FILENAME :图像文件名;FMT:图像文件格式;
文件必须在当前目录下,或在Matlab的一路径上。如果 imread不能够找到一名称为FILENAME的文件,那么它将找一名为FILENAME.FMT的文件
[X,MAP] = imread(FILENAME,FMT) 把图像FILENAME读入与它相关的图像色彩信息写入MAP,图像色彩信息值在范围[0,1]中自动地重新调整.
[...] = imread(FILENAME)这种方式是试图得到文件的格式从文件所包含的信息。
    [...] = imread(URL,...)从一Internet URL上读图像   URL 必须包含协议(即: "http://").
1.2数据类型:
    TIFF的特殊语法:
    [...] = imread(...,IDX) 从很多图像TIFF文件中 读一个图像;IDX是一个整数值,它显示了所读图像在文件中的顺序,例如:如果 IDX是 3, imread将读文件中的第三个图像。 如果省略了这个变量, imread将读文件中的第一个图像.
     IMREAD支持的图像文件格式:JPEG TIFF GIF   BMP PNG HDF   PCX    XWD    ICO    CUR    RAS PBM   PGM   PPM
相关信息也可在Matlab中查看: imfinfo, imwrite, imformats, fread,
二:imwrite输出图像
imwrite(A,FILENAME,FMT) 把图像 A 写入图像文件 FILENAME.
imwrite(X,MAP,FILENAME,FMT) 把 X和它的相关色彩信息MAP写入FILENAME.
imwrite(...,FILENAME) 把图像 写入图像文件FILENAME,并推测可能的格式用来做filename的扩展名。扩展名必须是FMT中一合法名.
imwrite(...,PARAM1,VAL1,PARAM2,VAL2,...) 不同的参数控制输出文件的各种不同特征。参数要是当前所支持的HDF,JPEG, TIFF, PNG, PBM, PGM, 和PPM 文件
三:image 显示图像.image(C) 把矩阵 C 转成一图像. C 可以是一MxN 或 MxNx3维的矩阵,且可以是包含 double, uint8,或 uint16 数据.image是用来显示附标图像,即显示的图像上有x,y坐标轴的显示,可以看到图像的像素大小。但可以加上axis off命令即可把坐标去掉。
imshow只是显示图像。用colormap来定义图像显示用的颜色查找表,比如用colormap(pink),可以把黑白图像显示成带粉红色的图像。
图像像素矩阵的数据类型:(1)显示真彩色图像像素三维矩阵X,如果是uint8类型,要求矩阵的数据范围为0-255,(2)如果是double型,则其数据范围为0-1,要不就会出错或者出现空白页。
类型转换:(1)如果你原来的数值是uint8,在运算中转换为double后,实际要显示的数值没有改变的话,只要用uint8(X)就可转换为uint8型,如果不想转换频繁,也可在显示时用X/255来转换为符合0-1double类型范围要求的数值显示。(2)如果显示索引图像(二维矩阵),如果索引图像像素数值是double型,则它的取值范围为1-length(colormap),数值起点为1,则矩阵中数值为1的对应colormap中第一行数据,如果索引图像像素数值是uint8,则取值范围为0-255,数值起点为0,则矩阵中数值为0的对应colormap中第一行数据,所以索引图像这两个数据类型之间的转换,要考虑到+1或-1。直接用uint8或double转换则会查找移位,产生失真情况。uint16数据类型与uint8类似,取值范围为0-65536。
四:其它常用图像操作:
图像显示于屏幕有imshow( ), image( )函数;
图像进行裁剪imcrop( );
图像的插值缩放imresize( )函数实现;
旋转用 imrotate( )实现。
五:具体的操作

下面通过运用图像处理工具箱中的有关函数对下图(nice.bmp)进行一些变换。见后面的transfer.m内容!

变换前图片:(nice.bmp)

变换后所得图片:newpic.bmp

例,在电脑F\picture下有一彩色图像文件nice.bmp,则可由下述语句读取:
下面是对图像 nice.bmp以y轴为对称轴所做的一个对称变换。
% Transfer1.m
clear all
figure
[x,map]=imread('F:\picture\nice.bmp');% 所得x为一375x420x3的矩阵
[w1,w2,w3]=size(x); % 375 X 420
w22=floor(w2/2);
image(x); %显示出图像
title('HELLO! @This is the first pose of me')%则显示出图像nice.bmp
axis off;                      % 去掉图像中的坐标
colormap(map);       % colormap(),图像查找表函数。函数结构为colormap(map),设置当前的图像查找表到map。
imwrite(x,map,'nice.bmp')
for i=1:w1       
for j=1:w22           % 图像关于y轴对折
t=x(i,j);
x(i,j)=x(i,w2-j+1);
x(i,w2-j+1)=t;
end
end
figure
image(x);  
axis off
title('HELLO!!@@ Can you find any difference of my two picture! ') colormap(map);
imwrite(x,map,'newpic.bmp') %把x写到nepic2.bmpz中去
% Transfer1.m文件中包含了最基本也是最常用的对读像处理的命令。
在对图像处理的整个过程中,实质上是对[x,map]=imread(‘figure')函数中所得x矩阵的各种变换!

你可能感兴趣的:(Matlab)