- yolov5单目测距+速度测量+目标跟踪
cv_2025
YOLO目标跟踪人工智能计算机视觉机器学习图像处理opencv
要在YOLOv5中添加测距和测速功能,您需要了解以下两个部分的原理:单目测距算法单目测距是使用单个摄像头来估计场景中物体的距离。常见的单目测距算法包括基于视差的方法(如立体匹配)和基于深度学习的方法(如神经网络)。基于深度学习的方法通常使用卷积神经网络(CNN)来学习从图像到深度图的映射关系。单目测距代码单目测距涉及到坐标转换,代码如下:defconvert_2D_to_3D(point2D,R,
- 深度学习特征提取魔改版太强了!发文香饽饽!
深度之眼
深度学习干货人工智能干货人工智能深度学习机器学习论文特征提取
要说CV领域经久不衰的研究热点,特征提取可以占一席,毕竟SLAM、三维重建等重要应用的底层都离不开它。再加上近几年深度学习兴起,用深度学习做特征提取逐渐成了主流,比传统算法无论是性能、准确性还是效率都更胜一筹。目前比较常见的深度学习特征提取方法有基于transformer、基于CNN、基于LSTM以及基于GAN,都发展的比较成熟。但为了追求更快速、准确、鲁棒的特征点提取,研究者们开始致力于改进深度
- **深度融合未来——DI-Fusion:开启在线三维重建新篇章**
余靖年Veronica
深度融合未来——DI-Fusion:开启在线三维重建新篇章在三维世界探索的前沿,一项名为DI-Fusion的技术正悄然掀起一波科技浪潮。由清华大学的JiahuiHuang、Shi-ShengHuang等人共同研发,这项创新成果已在CVPR2021上大放异彩,它的出现标志着在线隐式三维重构领域的重大突破。项目介绍重塑三维视觉新纪元DI-Fusion,又称为深度融合,是一项基于RGB-D流数据的新型在
- Unique3D:开启单张图片三维重建新篇章
余靖年Veronica
Unique3D:开启单张图片三维重建新篇章Unique3DOfficialimplementationofUnique3D:High-QualityandEfficient3DMeshGenerationfromaSingleImage项目地址:https://gitcode.com/gh_mirrors/un/Unique3D在当今高速发展的科技领域中,三维重建技术正以惊人的速度改变着我们的视
- unity3d 大地图接壤_多人紧密交互场景下的多视角人体动态三维重建方法与流程...
weixin_39947908
unity3d大地图接壤
本发明属于计算机视觉和图形学领域,具体讲,涉及人体关键点检测、追踪和人体三维模型重建方法。背景技术:在计算机视觉和计算机图形学中,无标记人体运动捕捉已经成为一个热门并且具有挑战性的热点问题,其主要任务是通过跟踪视频中移动对象的运动来恢复动态时间一致的3D形状。最近十年以来单人运动捕捉方法取得了巨大的进步,然而当前的方法需要对相机进行设置或处于一个受控的工作室环境中,并且依赖于良好的图像分割技术。在
- 【小白深度教程 1.5】手把手教你用立体匹配进行双目深度估计,以及 3D 点云生成(含 Python 代码解读)
小寒学姐学AI
从零开始的深度补全和深度估计3dpython人工智能计算机视觉自动驾驶深度学习笔记
【小白深度教程1.5】手把手教你用立体匹配进行双目深度估计,以及3D点云生成(含Python代码解读)1.立体匹配的原理2.块匹配算法(BlockMatchingAlgorithm)2.1代码中的立体匹配过程概述2.2代码原理及公式2.2.1.窗口匹配和代价函数(SAD)2.2.2.匹配过程2.2.3.视差图生成2.3代码的整体算法流程2.4性能与优化3.加载双目图像计算视差4.读取相机参数并计算
- 通俗易懂学nerf——初识nerf
四个字
通俗易懂学nerf人工智能自动驾驶python
nerf,听起来像是一个神秘的魔法词汇,但它其实是一种前沿且超酷的技术!它是能让你从二维世界“跃升”到三维空间的神奇技术。想象一下,你手里有一张平面的照片,上面的风景、建筑都是扁平的,仿佛缺少了生命力。但有了NERF三维重建,这一切都变得鲜活起来!它就像是个超级魔术师,轻轻一挥,那张平面的照片就变成了立体的三维模型,仿佛你可以走进去,感受那里的空气、触摸那里的物体。nerf是怎么做到的呢?其实它的
- NeRF——基于神经辐射场的三维场景重建和理解
知来者逆
数字人NeRF3D重建3d计算机视觉人工智能
概述三维重建是一种将物理世界中的实体转换为数字模型的计算机技术。其基本概念是通过对物理世界中的物体或场景进行扫描或拍摄,并使用计算机算法将其转换为三维数字模型。抽象意义上的三维模型指的是:形状和外观的组合,并且可以渲染成不同视角下真实感强烈的RGB图像。三维重建技术可以应用于许多领域,如建筑设计、游戏开发、虚拟现实等。通过三维重建技术,可以快速、准确地获取物体的几何形状、纹理、颜色等信息,从而实现
- 【视觉三维重建】【论文笔记】Deblurring 3D Gaussian Splatting
CS_Zero
论文阅读
去模糊的3D高斯泼溅,看Demo比3D高斯更加精细,对场景物体细节的还原度更高,[官网](https://benhenryl.github.io/Deblurring-3D-Gaussian-Splatting/)背景技术Volumetricrendering-basednerualfields:NeRF.Rasterizationrendering:3D-GS.Rasterization比vol
- 如果对类似汽车这种单体进行建模,围绕一圈拍摄,普通的手机或者相机拍摄的照片有足够的重叠度就能建模吗?不需要专业的设备可以吗?
大势智慧
汽车3d一问一答实景三维三维建模三维重建
答:可以建模。提供了完备的单体照片,在不需专业设备的情况下也可实现建模。重建大师是一款专为超大规模实景三维数据生产而设计的集群并行处理软件,输入倾斜照片,激光点云,POS信息及像控点,输出高精度彩色网格模型,可一键完成空三、自动建模和LOD构建。下载地址:武汉大势智慧-实景三维-云端建模-新型基础设施#实景三维##三维重建##重建大师##三维模型##三维建模##一问一答#
- 草图三维模型生成论文阅读整理
fisherisfish
论文阅读
论文终于接收啦!给草图研究做个收尾就去投实习!仅为个人整理,如有错误,欢迎指出!因为想给论文找创新点,所以需要大量阅读论文,部分论文会精读到实现的步骤,部分论文就记录一下思路。目前基于大模型和深度学习的三维重建任务可以简单分类为text23D,也就是文本控制转三维模型,一般使用语言模型提取文本的特征,然后去噪概率扩散模型生成多视角图像,最后再用NeRF进行三维重建,例如Dreamfusion、Ma
- 基于激光点云操作可视化界面
云杂项
python3d创业创新
基于激光点云操作可视化界面使用说明书第一章系统概述基于激光点云操作可视化界面是进行点云文件综合处理的GUI界面,包括计算点云文件中心点、点云文件体素化、点云文件的三维重建和点云文件网格化等模块。主要功能是快速的对点云文件进行读入,展示和处理,通过GUI界面对点云文件进行数据的提取和展示。该GUI界面可以对点云文件的加工和处理的各个环节进行快速计算、统一展示和有效保存,为之后对3D点云文件底层快速处
- PyQt Python 使用 VTK ITK 进行分割 三维重建 医学图像可视化系统 流程
恋恋西风
PythonpyqtpythonVTKITK
效果:重建流程:1.输入可以读取DICOM,niinrrd等数据设置读取器以加载DICOM图像系列。使用itk::GDCMImageIO作为DICOM图像的输入输出接口。使用itk::GDCMSeriesFileNames获取指定路径下的所有DICOM文件名。使用itk::ImageSeriesReader读取DICOM图像序列,并将其作为3D图像存储。2.分割创建itk::ThresholdIm
- 三维重建 阈值分割 3D可视化 医学图像分割 CT图像分割及重建系统 可视化编程技术及应用
恋恋西风
VTK毕业设计和论文qt三维重建VTKITK图像分割
一、概述此系统实现了常见的VTK四视图,实现了很好的CT图像分割,可以用于骨骼,头部,肺部,脂肪等分割,,并且通过三维重建实现可视化。使用了第三方库VTK,ITK实现分割和生不重建。窗口分为(横断面)、冠状面、矢状面,和3D窗口;包含了体绘制和面绘制;效果:CT分割重建二、开发环境操作系统:Windows10:工具:Qt5.12.4+VisualStudio2017,使用开源库:VTK-8.1IT
- Depth Anything放入MVS中?
cashap27149
算法
这是DepthAnything的深度值depth,这个depth通过depth=depth_anything(image)求得。但想要把这个深度值depth嵌入到三维重建算法框架中,并不是一件容易得事情,拿OpenMVS举例,下图是OpenMVS输出深度图的函数。OpenMVS的深度值保存在depthMap中,我们来看看depthMap的具体结构,可以看到OpenMVS使用TImage模板类实例化
- 3DCaricShop: A Dataset and A Baseline Method for Single-view 3D Caricature Face Reconstruction
理想很丰满,现实很骨感
#单视图三维人脸重建计算机视觉深度学习神经网络
目录1.文章概述2.相关工作2.1关于数据集2.2关于单视图三维重建3.本文核心方法3.13DCaricShop数据集3.2提出的baseline方法进行三维重建3.2.1概述3.2.2流程1.参数化建模(PCA)2.隐式三维重建3.3D关键点预测4.关键点引导的模型匹配3.2.3VC-GCN(视图协同图卷积网络)1.初始化2.图卷积4.最终效果1.文章概述3DCaricShop指的是文章提出的一
- KinectFusion论文品读
自信侠
KinectFusion:Real-timedensesurfacemappingandtracking论文链接:https://ieeexplore.ieee.org/document/6162880参考视频:KinectFusion和ElasticFusion三维重建方法-付兴银https://www.bilibili.com/video/av6060335/参考博文:https://www.
- [图形学/三维重建]大白话推导-摄像机内参(Intrinsic)、外参、3D物体坐标变换成2D
Bartender_Jill
Graphics图形学笔记3d图形渲染算法游戏引擎ue5动画
文章目录前言一、基础知识了解1.13D场景to2D图像1.2矩阵运算表达1.3摄像机坐标系原点设置二、内参矩阵三、外参总结前言参考资料https://www.bilibili.com/video/BV1Ae41127Yf?p=2一、基础知识了解在日常生活中,光线与物体界面的交互,构成了我们眼里的图像。但是为什么只有眼睛有成像,而像墙壁/桌子等这些平面上不会成像呢?比如我举着一张纸在半空中,周围环境
- 图像处理入门:OpenCV的基础用法解析
kadog
ByGPT图像处理opencv人工智能计算机视觉
图像处理入门:OpenCV的基础用法解析引言OpenCV的初步了解深入理解OpenCV:计算机视觉的开源解决方案什么是OpenCV?OpenCV的主要功能1.图像处理2.图像分析3.结构分析和形状描述4.动态分析5.三维重建6.机器学习7.目标检测OpenCV的应用场景OpenCV的安装基本图像操作图像的读取与显示图像的基本信息图像的保存图像处理技巧图像转换边缘检测特征检测与匹配引言OpenCV(
- 计算机视觉中的Homography单应矩阵应用小结
CS_Zero
SLAM计算机视觉CV计算机视觉slam几何学
计算机视觉中的Homography(单应)矩阵应用小结Homography矩阵在StructurefromMotion(SfM)或三维重建、视觉SLAM的初始化过程有着重要应用,本文总结了单应矩阵出现场景与常见问题求解。文章目录计算机视觉中的Homography(单应)矩阵应用小结单应矩阵的推导单应矩阵的求解与分解位姿问题单应矩阵的推导一般地,单应模型出现的前提条件是空间点分布在同一个平面上,例外
- 三维重建衡量指标记录
我宿孤栈
人工智能#视觉相关深度学习目标检测计算机视觉
1、完整性比率CompletenessRati(CR)完整性比率完整性比率是用于评估三维重建质量的指标之一,它衡量了重建结果中包含的真实物体表面或点云的百分比。完整性比率通常是通过比较重建结果中的点云或三维模型与真实或标准点云或模型之间的重叠来计算的。具体计算步骤可能如下:定义真实模型和重建模型:首先,需要有一个真实的或标准的三维模型或点云,以及一个重建的三维模型或点云(由三维重建技术生成)。计算
- 第十一篇【传奇开心果系列】Python的OpenCV技术点案例示例:三维重建
传奇开心果编程
Python库OpenCV技术点案例示例短博文python计算机视觉opencv
传奇开心果短博文系列系列短博文目录Python的OpenCV技术点案例示例系列短博文目录一、前言二、OpenCV三维重建介绍三、基于区域的SGBM示例代码四、BM(BlockMatching)算法介绍和示例代码五、基于能量最小化的GC(GraphCut)算法介绍和示例代码六、相机标定介绍和示例代码七、特征提取与匹配介绍和示例代码八、三角测量介绍和示例代码九、通过特征匹配和RANSAC(Random
- OpenCV学习记录——特征匹配
KAIs32
树莓派——OpenCVopencv学习人工智能嵌入式硬件计算机视觉
文章目录前言一、暴力匹配步骤分析二、代码分析前言特征匹配是一种图像处理技术,用于在不同图像之间寻找相似的特征点,并将它们进行匹配。特征匹配在计算机视觉和图像处理领域中具有广泛的应用,包括目标识别、图像拼接、三维重建等。一、暴力匹配步骤分析暴力匹配是一种简单直接的匹配方法,它遍历所有特征点的描述符,并计算它们之间的距离。然后根据距离进行排序,选择距离最短的特征点作为匹配点。虽然暴力匹配方法简单,但在
- 科普类——双目视觉在自动驾驶中存在的问题、挑战以及解决方案(三)
JANGHIGH
科普类无人驾驶自动驾驶人工智能机器学习
科普类——双目视觉在自动驾驶中存在的问题、挑战以及解决方案(三)双目视觉在自动驾驶中的应用虽然具有许多优势,但也存在一些问题和挑战,这些问题在不同的驾驶环境和条件下可能会有所不同。以下是一些主要问题及其可能的解决方案:立体匹配和视差计算:双目视觉的核心在于通过计算两幅图像之间的视差来获取深度信息。然而,立体匹配算法在处理遮挡、无特征区域或具有重复图案的高纹理区域时可能会出现精度问题。解决方案包括使
- 科普类——进行基线设计、系统测试和优化的立体视觉软件与工具(七)
JANGHIGH
科普类无人驾驶自动驾驶
科普类——进行基线设计、系统测试和优化的立体视觉软件与工具(七)在立体视觉领域,有许多立体视觉软件和工具可以帮助工程师进行基线设计、系统测试和优化。以下是一些常用的立体视觉软件和工具:Meshroom:这是一个基于AliceVision摄影测量计算机视觉框架的免费开源三维重建软件。Meshroom可以处理大规模的图像数据集,进行立体视觉重建。OpenMVG(OpenMultipleViewGeom
- 《RAFT-Stereo:Multilevel Recurrent Field Transforms for Stereo Matching》论文笔记
m_buddy
#DepthEstimation#OpticalFlowRAFT-Stereo
参考代码:RAFT-Stereo1.概述导读:RAFT算法是非常经典的立体匹配算法,在光流和立体匹配任务中有着广泛的运用。而这篇文章正是基于RAFT并将其运用到了立体匹配中,并且在如下的几个方面进行改进:1)相比原生的RAFT算法钟重点关注X轴(W方向)的视差信息,前提是输入的图像对需要事先经过极线校准;2)在GPU的update阶段使用stride为[8,16,32][8,16,32][8,16
- 双目相机立体匹配基础
极客范儿
传感器标定双目相机立体匹配
双目匹配就是用左相机和右相机去拍摄同一个点,目的是找到三维世界的同一个点,也就是在左相机和右相机中的成像点之间的像素差(视差),根据视差去求解深度,那么找到左相机点到右相机的同一个对应点这个过程就是双目相机立体匹配。一、双目视觉流程双目视觉流程是通过双目相机的左相机和右相机拍摄标定板的图片制作标定(离线),在线拍摄后进行矫正。满足两个相机是平行的要求,做匹配点也能满足从一维在同一行去搜索,接着进行
- 三维重建开源函数库或者工具
冰清-小魔鱼
遥感GIS计算机视觉目标检测人工智能
三维重建使用摄影测量、计算机视觉技术,利用立体视觉恢复真实相机姿态,获取现实物体的三维信息,并进行虚拟三维场景重现。1、OpenDroneMapODM是一个基于航空影像的三维重建集成工具箱,利用多幅航空影像恢复相机姿态和3D场景,可以生产点云、三维贴图模型、正射影像、数字表面模型、数字高程模型等,提供Web接口,支持CUDA加速,基础函数库使用OpenSfM,OpenMVS,PDAL,Entwin
- 三维重建方法3D gaussian splatting与NeRF的区别和异同
Soumes
3d计算机视觉人工智能深度学习机器学习
最近学习了一些三维重建相关的内容,目前比较主要的重建流派就是3DGS以及NeRF,NeRF作为2020年发布的文章轰动一时,影响深远,有很多NeRFbased的相关工作在这些年涌现。3DGS作为2023年的newtalkofthetown,其在保证合成质量的情况下能够以数倍乃至数十倍的速度碾压许多NeRFbased的方法,因此得到了广泛关注。这篇文章从几个角度比较了NeRF(最初的版本)和3Dga
- 【3DGS】从新视角合成到3D Gaussian Splatting
UnderTurrets
图形渲染计算机视觉3d
文章目录引言:什么是新视角合成任务定义一般步骤NeRF的做法NeRF的三维重建NeRF的渲染3DGS的三维重建从一组图片估计点云高斯点云模型球谐函数参数优化损失函数和协方差矩阵的优化高斯点的数量控制(AdaptiveDensityControl)新的问题3DGS的渲染:快速可微光栅化3DGS的限制引言:什么是新视角合成任务定义新视角合成(NovelViewSynthesis),属于计算机视觉领域,
- jsonp 常用util方法
hw1287789687
jsonpjsonp常用方法jsonp callback
jsonp 常用java方法
(1)以jsonp的形式返回:函数名(json字符串)
/***
* 用于jsonp调用
* @param map : 用于构造json数据
* @param callback : 回调的javascript方法名
* @param filters : <code>SimpleBeanPropertyFilter theFilt
- 多线程场景
alafqq
多线程
0
能不能简单描述一下你在java web开发中需要用到多线程编程的场景?0
对多线程有些了解,但是不太清楚具体的应用场景,能简单说一下你遇到的多线程编程的场景吗?
Java多线程
2012年11月23日 15:41 Young9007 Young9007
4
0 0 4
Comment添加评论关注(2)
3个答案 按时间排序 按投票排序
0
0
最典型的如:
1、
- Maven学习——修改Maven的本地仓库路径
Kai_Ge
maven
安装Maven后我们会在用户目录下发现.m2 文件夹。默认情况下,该文件夹下放置了Maven本地仓库.m2/repository。所有的Maven构件(artifact)都被存储到该仓库中,以方便重用。但是windows用户的操作系统都安装在C盘,把Maven仓库放到C盘是很危险的,为此我们需要修改Maven的本地仓库路径。
- placeholder的浏览器兼容
120153216
placeholder
【前言】
自从html5引入placeholder后,问题就来了,
不支持html5的浏览器也先有这样的效果,
各种兼容,之前考虑,今天测试人员逮住不放,
想了个解决办法,看样子还行,记录一下。
【原理】
不使用placeholder,而是模拟placeholder的效果,
大概就是用focus和focusout效果。
【代码】
<scrip
- debian_用iso文件创建本地apt源
2002wmj
Debian
1.将N个debian-506-amd64-DVD-N.iso存放于本地或其他媒介内,本例是放在本机/iso/目录下
2.创建N个挂载点目录
如下:
debian:~#mkdir –r /media/dvd1
debian:~#mkdir –r /media/dvd2
debian:~#mkdir –r /media/dvd3
….
debian:~#mkdir –r /media
- SQLSERVER耗时最长的SQL
357029540
SQL Server
对于DBA来说,经常要知道存储过程的某些信息:
1. 执行了多少次
2. 执行的执行计划如何
3. 执行的平均读写如何
4. 执行平均需要多少时间
列名 &
- com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil
7454103
eclipse
今天eclipse突然报了com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil 错误,并且工程文件打不开了,在网上找了一下资料,然后按照方法操作了一遍,好了,解决方法如下:
错误提示信息:
An error has occurred.See error log for more details.
Reason:
com/genuitec/
- 用正则删除文本中的html标签
adminjun
javahtml正则表达式去掉html标签
使用文本编辑器录入文章存入数据中的文本是HTML标签格式,由于业务需要对HTML标签进行去除只保留纯净的文本内容,于是乎Java实现自动过滤。
如下:
public static String Html2Text(String inputString) {
String htmlStr = inputString; // 含html标签的字符串
String textSt
- 嵌入式系统设计中常用总线和接口
aijuans
linux 基础
嵌入式系统设计中常用总线和接口
任何一个微处理器都要与一定数量的部件和外围设备连接,但如果将各部件和每一种外围设备都分别用一组线路与CPU直接连接,那么连线
- Java函数调用方式——按值传递
ayaoxinchao
java按值传递对象基础数据类型
Java使用按值传递的函数调用方式,这往往使我感到迷惑。因为在基础数据类型和对象的传递上,我就会纠结于到底是按值传递,还是按引用传递。其实经过学习,Java在任何地方,都一直发挥着按值传递的本色。
首先,让我们看一看基础数据类型是如何按值传递的。
public static void main(String[] args) {
int a = 2;
- ios音量线性下降
bewithme
ios音量
直接上代码吧
//second 几秒内下降为0
- (void)reduceVolume:(int)second {
KGVoicePlayer *player = [KGVoicePlayer defaultPlayer];
if (!_flag) {
_tempVolume = player.volume;
- 与其怨它不如爱它
bijian1013
选择理想职业规划
抱怨工作是年轻人的常态,但爱工作才是积极的心态,与其怨它不如爱它。
一般来说,在公司干了一两年后,不少年轻人容易产生怨言,除了具体的埋怨公司“扭门”,埋怨上司无能以外,也有许多人是因为根本不爱自已的那份工作,工作完全成了谋生的手段,跟自已的性格、专业、爱好都相差甚远。
- 一边时间不够用一边浪费时间
bingyingao
工作时间浪费
一方面感觉时间严重不够用,另一方面又在不停的浪费时间。
每一个周末,晚上熬夜看电影到凌晨一点,早上起不来一直睡到10点钟,10点钟起床,吃饭后玩手机到下午一点。
精神还是很差,下午像一直野鬼在城市里晃荡。
为何不尝试晚上10点钟就睡,早上7点就起,时间完全是一样的,把看电影的时间换到早上,精神好,气色好,一天好状态。
控制让自己周末早睡早起,你就成功了一半。
有多少个工作
- 【Scala八】Scala核心二:隐式转换
bit1129
scala
Implicits work like this: if you call a method on a Scala object, and the Scala compiler does not see a definition for that method in the class definition for that object, the compiler will try to con
- sudoku slover in Haskell (2)
bookjovi
haskellsudoku
继续精简haskell版的sudoku程序,稍微改了一下,这次用了8行,同时性能也提高了很多,对每个空格的所有解不是通过尝试算出来的,而是直接得出。
board = [0,3,4,1,7,0,5,0,0,
0,6,0,0,0,8,3,0,1,
7,0,0,3,0,0,0,0,6,
5,0,0,6,4,0,8,0,7,
- Java-Collections Framework学习与总结-HashSet和LinkedHashSet
BrokenDreams
linkedhashset
本篇总结一下两个常用的集合类HashSet和LinkedHashSet。
它们都实现了相同接口java.util.Set。Set表示一种元素无序且不可重复的集合;之前总结过的java.util.List表示一种元素可重复且有序
- 读《研磨设计模式》-代码笔记-备忘录模式-Memento
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
/*
* 备忘录模式的功能是,在不破坏封装性的前提下,捕获一个对象的内部状态,并在对象之外保存这个状态,为以后的状态恢复作“备忘”
- 《RAW格式照片处理专业技法》笔记
cherishLC
PS
注意,这不是教程!仅记录楼主之前不太了解的
一、色彩(空间)管理
作者建议采用ProRGB(色域最广),但camera raw中设为ProRGB,而PS中则在ProRGB的基础上,将gamma值设为了1.8(更符合人眼)
注意:bridge、camera raw怎么设置显示、输出的颜色都是正确的(会读取文件内的颜色配置文件),但用PS输出jpg文件时,必须先用Edit->conv
- 使用 Git 下载 Spring 源码 编译 for Eclipse
crabdave
eclipse
使用 Git 下载 Spring 源码 编译 for Eclipse
1、安装gradle,下载 http://www.gradle.org/downloads
配置环境变量GRADLE_HOME,配置PATH %GRADLE_HOME%/bin,cmd,gradle -v
2、spring4 用jdk8 下载 https://jdk8.java.
- mysql连接拒绝问题
daizj
mysql登录权限
mysql中在其它机器连接mysql服务器时报错问题汇总
一、[running]
[email protected]:~$mysql -uroot -h 192.168.9.108 -p //带-p参数,在下一步进行密码输入
Enter password: //无字符串输入
ERROR 1045 (28000): Access
- Google Chrome 为何打压 H.264
dsjt
applehtml5chromeGoogle
Google 今天在 Chromium 官方博客宣布由于 H.264 编解码器并非开放标准,Chrome 将在几个月后正式停止对 H.264 视频解码的支持,全面采用开放的 WebM 和 Theora 格式。
Google 在博客上表示,自从 WebM 视频编解码器推出以后,在性能、厂商支持以及独立性方面已经取得了很大的进步,为了与 Chromium 现有支持的編解码器保持一致,Chrome
- yii 获取控制器名 和方法名
dcj3sjt126com
yiiframework
1. 获取控制器名
在控制器中获取控制器名: $name = $this->getId();
在视图中获取控制器名: $name = Yii::app()->controller->id;
2. 获取动作名
在控制器beforeAction()回调函数中获取动作名: $name =
- Android知识总结(二)
come_for_dream
android
明天要考试了,速速总结如下
1、Activity的启动模式
standard:每次调用Activity的时候都创建一个(可以有多个相同的实例,也允许多个相同Activity叠加。)
singleTop:可以有多个实例,但是不允许多个相同Activity叠加。即,如果Ac
- 高洛峰收徒第二期:寻找未来的“技术大牛” ——折腾一年,奖励20万元
gcq511120594
工作项目管理
高洛峰,兄弟连IT教育合伙人、猿代码创始人、PHP培训第一人、《细说PHP》作者、软件开发工程师、《IT峰播》主创人、PHP讲师的鼻祖!
首期现在的进程刚刚过半,徒弟们真的很棒,人品都没的说,团结互助,学习刻苦,工作认真积极,灵活上进。我几乎会把他们全部留下来,现在已有一多半安排了实际的工作,并取得了很好的成绩。等他们出徒之日,凭他们的能力一定能够拿到高薪,而且我还承诺过一个徒弟,当他拿到大学毕
- linux expect
heipark
expect
1. 创建、编辑文件go.sh
#!/usr/bin/expect
spawn sudo su admin
expect "*password*" { send "13456\r\n" }
interact
2. 设置权限
chmod u+x go.sh 3.
- Spring4.1新特性——静态资源处理增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- idea ubuntuxia 乱码
liyonghui160com
1.首先需要在windows字体目录下或者其它地方找到simsun.ttf 这个 字体文件。
2.在ubuntu 下可以执行下面操作安装该字体:
sudo mkdir /usr/share/fonts/truetype/simsun
sudo cp simsun.ttf /usr/share/fonts/truetype/simsun
fc-cache -f -v
- 改良程序的11技巧
pda158
技巧
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。
让我们看一些基本的编程技巧:
尽量保持方法简短
永远永远不要把同一个变量用于多个不同的
- 300个涵盖IT各方面的免费资源(下)——工作与学习篇
shoothao
创业免费资源学习课程远程工作
工作与生产效率:
A. 背景声音
Noisli:背景噪音与颜色生成器。
Noizio:环境声均衡器。
Defonic:世界上任何的声响都可混合成美丽的旋律。
Designers.mx:设计者为设计者所准备的播放列表。
Coffitivity:这里的声音就像咖啡馆里放的一样。
B. 避免注意力分散
Self Co
- 深入浅出RPC
uule
rpc
深入浅出RPC-浅出篇
深入浅出RPC-深入篇
RPC
Remote Procedure Call Protocol
远程过程调用协议
它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发