- H266/VVC 帧间预测中 AMVR 技术
码流怪侠
帧间预测H266VVCVVenCAMVR运动搜索视频编解码
自适应运动精度AMVR最早的视频编码标准采用整数像素精度描述运动矢量,因此运动估计只能利用位于整数点位置的像素。但实际上物体的真实运动经常是连续的,采用整像素精度并不能很好的描述运动矢量。H.264和HEVC都对亮度分量的运动矢量采用1/4像素精度、色度分量的运动矢量采用1/8像素精度。在HEVC中,当切片头中的use_integer_mv_flag等于0时,运动矢量差(MVDs,即运动矢量与预测
- zobovision随谈H.265/HEVC编码FPGA实现(一)
zobovision
视频图像编解码FPGAIPfpga开发视频编解码
zobovision随谈H.265/HEVC编码FPGA实现(一)H.265/HEVC出来已有10年,但市场应用难言巅峰,正如古董级的H.264现在仍然大行其道,H.265的全面应用仍有待市场发酵,至少在硬件产品端应用,值得期待。一来H.265相对H.264而言,压缩技术确实要先进不少,不管是理论上还是实际效果方面;二是H.265相对后来者H.266/VVC等而言,实用性更强,性价比更高,产品端的
- 【视频编码\VVC】变换编码基础知识及标准设计相关参数
鴒凰
视频编码音视频视频编解码视频编码h.266VVC笔记
变化编码的基础知识定义:变换编码是将以空间域像素形式描述的图像转换至变换域,以变换系数的形式加以表示。大部分图像都包含较多平坦区域和内容变化缓慢的区域,使得图像能量在空间域的分散转换为变换域的相对集中分布,从而达到空间去冗余的目的。变换概述选用DCT变换的原因:DCT形式与输入信号无关并且存在快速实现算法,并且性能接近K-L变换。H.264第一次使用了整数DCTH.265沿用了整数DCT,进行了不
- 视频编码结构
一箭辰空
音视频
VVCVVC标准对应的参考软件平台是VTM(VVCTestModel)两个基本目标1.高压缩性能,定义一套视频编码技术,其压缩性能要远优于以往的同类标准。2.宽应用领域,能够有效地用于比先前标准更广阔的范围。编码过程图像分块、预测、变换、量化、熵编码、环路滤波1.图像分块如图1所示,VVC在编码原理和基本结构方面没有突破,仍沿用从H.261就开始的基于块的混合视频编码框架,即预测加变换的分块编码方
- H266/VVC多样化视频编码工具概述
DogDaoDao
H266(VVC)标准H266VVC全景视频编码视频编解码屏幕内容编码
全景视频编码全景视频:具有360度全包围视角的球面视频。全景视频编码:包括H266在内的视频编码算法都是以平面视频为对象的,为了采用传统的视频编码编码算法,全景视频需要转换为平面视频,其中经纬图等角映射(ERP)、立方体映射(CMP)是常用的格式。水平环绕运动补偿:普通平面视频编码算法的运动补偿中,当运动矢量指向参考图像边界区域外的像素时,会对参考图像边界进行填充以获取参考像素值,填充方法是用距离
- H266/VVC率失真优化与速率控制概述
DogDaoDao
H266(VVC)标准H266VVC率失真视频编解码实时音视频拉格朗日
率失真优化技术率失真优化:视频编码的主要目的是在保证一定视频质量的条件下尽量降低视频的编码比特率,或者在一定编码比特率限制条件下尽量地减小编码失真。在固定的编码框架下,为了应对不同的视频内容,往往有多种候选的编码方式,编码器的一个主要工作就是在某种策略选择最优的编码参数,以实现最优的编码性能。基于率失真理论的编码参数优化被称为率失真优化,率失真优化技术是保证编码器效率的主要手段。率失真理论:在允许
- H266/VVC环路滤波技术概述
DogDaoDao
H266(VVC)标准H266VVC环路滤波SAO编码失真视频编解码音视频
环路滤波环路滤波:是提高编码视频主客观质量的有效工具,不同于图像增强处理中的滤波技术,环路滤波是在视频编码过程进行滤波,滤波后的图像用于后续图像的编码,即位于“环路”中。环路滤波的作用:一方面提高了编码图像的质量,一方面为后续编码图像提供了高质量的参考图像。常见的编码失真:方块效应、振铃效应、颜色偏差、图像模糊等常见编码失真效应。H266环路滤波技术:如下图,H266标准的环路滤波技术包括亮度映射
- H266/VVC网络适配层概述
DogDaoDao
H266(VVC)标准H266视频编解码NALUVVC网络适配层实时音视频
视频编码标准的分层结构视频数据分层的必要性:网络类型的多样性、不同的应用场景对视频有不同的需求。编码标准的分层结构:为了适应不同网络和应用需求,视频编码数据根据其内容特性被分成若干NAL单元(NALUnit,NALU),并对NALU的内容特性进行标识。网络只需要根据NALU及其标识就可以优化视频传输性能,不再需要亲自分析视频数据的内容特性。如下图就是典型的分层结构。H266中NAL的作用机制:原始
- H.266/VVC帧间预测技术学习:几何划分模式(Geometric partitioning mode, GPM)
涵小呆
VVC/H.266视频编码H.266/VVC
几何划分模式(Geometricpartitioningmode,GPM)原理针对图像中运动物体的边界部分,VVC采用了几何划分模式进行帧间预测。如下图所示,GPM模式在运动物体的边界处进行了更精细的划分。划分类型使用GPM模式时,通过几何定位的直线将CU划分为两部分(下图所示)。分割线的位置从数学上是根据特定分区的角度参数φ和偏移参数ρ得出的,如下图所示。VVC标准中的GPM规定将360°不等间
- H266/VVC变换编码技术概述
DogDaoDao
H266(VVC)标准人工智能机器学习H266VVC变换编码视频编解码DCT
视频变换编码变换编码:是指将以空间域像素形式描述的图像转换至变换域。以变换系数的形式加以表示。适当的变换可使图像能量在空间域的分散分布转换为在变换域的相对集中分布,从而达到去除空间冗余的目的。DCT:离散余弦变换(DiscreteCosineTransform,DCT)与去相关性性能最优的K-L变换相比,与输入信号无关且存在快速实现算法,性能接近K-L变换,广泛应用在图像视频编码中。H264首次使
- CompressAI:深度学习与传统图像压缩
qq_41627642
深度学习多模态深度学习人工智能
1、图像压缩算法原理传统的有损图像压缩方法,如JPEG,JPEG2000,HEVC或AV1或VVC,在类似的编码方案上进行了迭代改进:将图像划分为像素块,使用变换域通过线性变换(例如:DCT或DWT)去相关空间频率,基于相邻值执行一些预测,量化转换系数,最后使用有效的熵编码器(例如:CABAC[11])将量化值和预测侧信息编码成比特流。另一方面,基于人工神经网络的编解码器主要依赖于学习分析和综合非
- H266/VVC帧间预测编码技术概述
DogDaoDao
H266(VVC)标准人工智能视频编解码H266VVC深度学习预测编码实时音视频
帧间预测编码简述帧间预测利用视频时间域的相关性,使用邻近已编码图像像素值预测当前图像的像素值,能有效去除视频时域冗余。目前主要的视频编码标准中,帧间预测都采用基于块的运动补偿技术,不同的编码标准有不同的分块方式。为当前图像的每个像素块在之前已编码图像找到一个最佳匹配块,这个寻找过程就称为运动估计(MotionEstimation,ME)。用于预测的图像被称为参考图像或参考帧(ReferencePi
- H266/VVC帧内预测编码
DogDaoDao
H266(VVC)标准H266VVC帧内预测预测编码视频编解码实时音视频深度学习
预测编码技术预测编码(PredictionCoding)是指利用已编码的一个或多个样本值,根据某种模型或方法,对当前的样本值进行预测,并对样本真实值和预测值之间的差值进行编码。视频中的每个像素看成一个信源符号,它通常与空域上或时域上邻近的像素具有较强的相关性,因此视频是一种有记忆信源。预测编码技术通过预测模型消除像素间的相关性,得到的差值信号可以认为没有相关性,或者相关性很小,因此可以作为无记忆信
- Windows11编译VTM源码生成Visual Studio 工程
DogDaoDao
#VTMvisualstudioVTMH266VVC视频编解码WindowsVS2022
VTM介绍VTM作为H266/VVC标准的官方参考软件,一直用作H266/VVC标准的研究和迭代。关于H2666/VVC标准的介绍、代码、提案、文档等,可以参考H266/VVC编码标准介绍。官方代码地址:https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM(最新)git镜像地址:https://github.com/yanceyxin/VVCSo
- DCC2023:基于梯度线性模型的帧内色度预测
Dillon2015
H.266/VVC视频编码CCLMVVC
本来自DCC2023文章《GradientLinearModelforChromaIntraPrediction》在VVC中引入了CCLM工具,CCLM用于帧内预测,它根据一个线性模型通过亮度像素重建值获得色度像素的预测值。对于YUV420格式的视频,需要先将亮度分量使用低通滤波器下采样到和色度分量同样的分辨率,然后使用线性模型计算色度的预测值。然而下采样过程会丢失空域信息(例如边界、梯度),为了
- 【论文解读】Comparing VVC, HEVC and AV1 using Objective and Subjective Assessments
DogDaoDao
论文解读AV1VVCHEVC视频编解码HMVTMAOM
时间:2020级别:IEEE机构:IEEE组织摘要:对3种最新的视频编码标准HEVC(HighEfficiencyvideoCoding)测试模型HM(HighEfficiencyvideoCoding)、amediavideo1(AV1)和VersatilevideoCoding测试模型(VTM)进行了客观和主观质量评价。通过精细化选择9个源序列,使其具有多样性和代表性,并在预定义的目标码率下对
- H266/VVC标准的编码结构介绍
DogDaoDao
H266(VVC)标准H266VVC视频编解码实时音视频VTM
概述CVS:H266的编码码流包含一个或多个编码视频序列(CodedVideoSwquence,CVS),每个CVS以帧内随机接入点(IntraRandomAccessPoint,IRAP)或逐渐解码刷新(GradualDecodingRefresh,GDR)图像开始。CVS是时域独立可解码的基本单元。CLVS:编码视频序列层,当编码码流只包含一层时,CVS与CLVS一致。AU:访问单元PU:图像
- H266/VVC编码标准介绍
DogDaoDao
H266(VVC)标准VVCH266视频编解码实时音视频VTM
视频编码标准多样的视频应用催生了多种的视频编码方法。为了使编码后的码流能够在大范围内通用和规范,从20世纪80年代开始,国际组织就开始对视频编码建立国际标准。什么是视频编码标准:视频编码标准只规定了码流的语法语义和解码器,只要求视频编码后的码流符合标准的语法结构,解码器就可以根据码流的语法语义进行正常解码。因此,符合某个解码标准的编码器是有很大的自由度的,只要编码后的码流符合标准规定即可。编码器输
- 屏幕内容编码:HEVC SCC、VVC、AVS3、AV1和EVC
若忘即安
VVC/H.266音频编码解码
近年来,随着许多相关应用变得非常流行,包括计算机生成的文本、图形和动画在内的屏幕内容视频引起了比以往更多的关注。然而,传统的视频编解码器通常被设计成处理摄像机捕获的自然视频。另一方面,屏幕内容视频表现出不同的信号特征和人类对失真的视觉敏感度的不同水平。为了解决对这种内容进行高效编码的需要,已经专门开发了许多编码工具,并且在编码效率方面取得了巨大进步。所有最近开发的视频编码标准都包含屏幕内容编码(S
- H.266/VVC的关键编码技术(五):AI, RA, LD三种编码结构
若忘即安
VVC/H.266视频处理音频编码解码
AI,RA,LD三种编码结构VVC中采用三种编码结构:全帧内(AI,A11lntra)、低延迟(LD,LowDelay),随机接入(RA,RandomAccess),分别用于满足不同场景下的编码需求。AI编码在全帧内编码结构下,序列中每一帧图像均采用帧内编码,具有各自独立的上图所示,I帧不需要参考其他帧的像素信息,可独立的进行编解码,且每一帧的量化参数都保持一致,AI编码结构适合信道环境较差,容易
- H.266/VVC的编码框架
若忘即安
VVC/H.266视频处理音频编码解码
VVC编码框架VVC仍沿用从H.261开始使用的基于块的混合视频编码框架,包括帧内预测、帧间预测、变换、量化、环路滤波、嫡编码等。基本流程是首先利用帧内/帧间预测编码消除空域/时域冗余,接着对预测残差进行变换量化编码消除残差数据间的空域冗余,最后通过嫡编码消除经变换和量化后的残差数据中的信息嫡冗余。在VVC中,视频进入编码器后,每帧图像首先被划分为互不重叠的图像块,称之为编码树单元(CodingT
- H.266VVC的关键编码技术(一):帧内预测
若忘即安
VVC/H.266视频处理音频编码解码调制与编码策略
1.帧内预测帧内预测是指利用视频中相邻像素之间的相似性或者关联性,使用当前图像己编码的相邻像素预测当前像素,从而达到去除空间冗余的口的,得到的预测残差将经过后续的变换、量化和嫡编码等模块进一步处理生成最终的码流。(1)帧内预测模式为了捕捉自然视频中任意的边缘方向,VVC中的帧内预测模式从HEVC中使用的33种扩展到65种。红色虚线表示了VVC中新出现的帧内角度预测模式,黑色为HEVC原有的帧内预测
- AVC、HEVC、VVC帧间预测技术
傻不拉几的程序员
工作学习编解码AVCHEVCVVC
帧间预测总体思路:帧间预测主要的工作是运动估计与运动补偿。所谓运动估计简单说就是在参考帧中找到当前块的最优参考块,用运动向量(MV)表示参考块与当前块的位置关系。所谓运动补偿简单说就是对参考块与当前块求差值得到残差用于传输。总的过程:通过搜索算法找到最优的参考块,计算MV,计算残差,MV提供位置信息,残差提供值的信息。========================================
- AOMedia发布免版税沉浸音频规范IAMF
LiveVideoStack_
音视频
11月10日,开放媒体联盟(AOMedia)发布了旗下首个沉浸式音频规范IAMF(https://aomediacodec.github.io/iamf/),IAMF是一种编解码器无关的容器规范,可以携带回放时间渲染算法和音频混音的信息,而且和旗下的AV1视频标准一样为免版税。从AV1开始,AOMedia就在用开放来对抗老牌的标准组织ITU与ISO/IEC的HEVC、VVC等标准。目前,AV1已经
- 编解码再进化:Ali266与下一代视频技术
LiveVideoStack_
音视频
过去的一年见证了人类百年不遇的大事记,也见证了多种视频应用的厚积薄发。而因此所带来的视频数据量的爆发式增长更加加剧了对高效编解码这样的底层硬核技术的急迫需求。正是在这样的大环境下,在ITU-TVCEG和ISO/IECMPEG两大标准组织再次联手推出的最新视频编解码标准VVC定稿不久之后,阿里巴巴的视频团队开始全力投入开展VVC软件编解码的开发工作。本次LiveVideoStackCon2021北京
- 阿里云视频云发布实时高清VVC编码器Ali266,真正开启VVC商用之路
阿里云视频云
阿里云视频云阿里云视频处理视频编码编码器视频云
基于新一代国际视频编解码标准H.266/VVC,阿里云视频云近日发布了实时高清编码器Ali266,有力推动H.266/VVC标准应用的落地,真正开启H.266/VVC的商用之路,并强力赋能超高清4K、8K、以及AR/VR等应用的真实普及。编码器Ali266=实时+高清+超压缩阿里云视频云于7月中发布了实时高清VVC编码器Ali266首个版本,从已公开的资料可知,这是目前全世界最快的VVC编码器。具
- AVS3:双向光流BIO
Dillon2015
AVS3视频编码avs3双向光流BIOBDOF1024程序员节
AVS3引入了双向光流(BI-directionalOpticalflow,BIO)技术,和H.266/VVC中的BDOF类似,BIO用于解决基于块的预测会存在块内某些区域仍会有偏差的现象导致需要划分更小的块。通过补偿小的像素区域的位移,BIO可以使用更大的块来编码从而节省码率,达到像素级预测的效果。如图1,左侧是双向光流补偿前的预测结果,右侧是补偿后的预测结果。图1补偿前后的预测传统的双向预测对
- AVS3:跨分量预测TSCPM
Dillon2015
AVS3视频编码avs3TSCPMCCLM
TSCPM两步跨分量预测模式(TSCPM,TwoStepCross-componentPredictionMode)通过探索不同分量之间的线性关系去除分量间冗余。TSCPM分为两个步骤执行,首先使用Co-locatedluma块通过参数α和β生成尺寸相同的临时预测块,第二步再进行下采样,得到色度分量的预测值,如图1。图1TSCPMAVS3的TSCPM仅用于intra模式中,类似于VVC中的CCLM
- 帧间快速算法论文阅读
什么都不懂的小青蛙
智能视频编码算法论文阅读视频编解码机器学习深度学习人工智能
LowcomplexityintercodingschemeforVersatileVideoCoding(VVC)通过分析相邻CU的编码区域,预测当前CU的编码区域,以终止不必要的分割模式。1、2、3、4表示当前CU(CU0)的相邻CU。根据空间相关性,当前CU的面积预测为wiw_iwi的值分别为0.3,0.2,0.3,0.2。(考虑到水平方向和垂直方向的相关性大于对角线方向的相关性)当预测面积
- VVC中图片的划分
Ginkgo
在VVC中,输入的视频首先被划为为相等大小的块(最大支持划分为128×128大小的块,虽然VVC支持的变换的块最大尺寸为64×64),这些等大的块成为CTUs(codingtreeunits),每一个CTU都有Y、Cb、Cr三个等大的CU。图1混合编码框架把输入的图像划分为CTUs之后,再对CTUs进行进一步的归类。在HEVC中,可以把CTUs分为Slice和Tile,其中Slice可以进一步划分
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f