- AI推介-多模态视觉语言模型VLMs论文速览(arXiv方向):2024.04.15-2024.04.25
小小帅AIGC
VLM论文时报人工智能语言模型自然语言处理VLM视觉语言模型多模态计算机视觉
文章目录~1.AutoGluon-Multimodal(AutoMM):SuperchargingMultimodalAutoMLwithFoundationModels2.FusionofDomain-AdaptedVisionandLanguageModelsforMedicalVisualQuestionAnswering3.CatLIP:CLIP-levelVisualRecognitio
- AutoML原理与代码实例讲解
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AutoML原理与代码实例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着数据量的爆炸式增长和算法的日益复杂,机器学习在各个领域的应用越来越广泛。然而,机器学习模型的开发过程往往需要大量的专业知识和经验。数据预处理、特征工程、模型选择、参数调优等步骤都需要人工进行,这使得机器学习模型的开发变得复杂且耗时。为了解决这
- 遗传算法与深度学习实战(1)——进化深度学习
盼小辉丶
遗传算法与深度学习实战深度学习人工智能遗传算法
遗传算法与深度学习实战(1)——进化深度学习0.前言1.进化深度学习1.1进化深度学习简介1.2进化计算简介2.进化深度学习应用场景3.深度学习优化3.1优化网络体系结构4.通过自动机器学习进行优化4.1自动机器学习简介4.2AutoML工具5.进化深度学习应用5.1模型选择:权重搜索5.2模型架构:架构优化5.3超参数调整/优化5.4验证和损失函数优化5.5增强拓扑的神经进化小结系列链接0.前言
- Python自动化机器学习库之evalml使用详解
Rocky006
python人工智能开发语言
概要数据科学是当今科技领域中不可或缺的一部分,而机器学习是数据科学的核心。然而,构建和部署机器学习模型常常需要大量的时间和精力,涉及到数据预处理、特征工程、模型选择、超参数调优等一系列复杂任务。为了简化这个过程,使其更加高效,EvalML库应运而生。EvalML是一款用于自动化机器学习(AutoML)的Python库,它可以自动完成机器学习工作流程的各个阶段。本文将详细介绍EvalML的功能和用法
- 【AutoML】AutoKeras 数据清洗与简单提纯
kida_yuan
Pythonpython数据处理automl
从上一章节可知,数据已经从4个数据源获取过来并已全部入库。目前数据库共分出11张表,如下图:mysql>usephw2_industry_bot;ReadingtableinformationforcompletionoftableandcolumnnamesYoucanturnoffthisfeaturetogetaquickerstartupwith-ADatabasechangedmysql
- Scikit-Learn 高级教程——自动化机器学习
Echo_Wish
Python笔记Python算法机器学习scikit-learn自动化
PythonScikit-Learn高级教程:自动化机器学习自动化机器学习是通过自动搜索和选择最佳模型及其超参数的过程,以简化机器学习任务的一种方法。Scikit-Learn中提供了AutoML工具,本篇博客将详细介绍如何使用AutoML来自动化机器学习任务。1.安装AutoML包首先,确保你已经安装了相应的AutoML包。Scikit-Learn提供了一些AutoML工具,其中一种常用的是TPO
- 使用强化学习进行神经网络结构搜索的代码以及修改
ThreeS_tones
DRL神经网络人工智能深度学习
目录代码一(UsingTensorFlow):代码二(UsingTensorFlow):代码三(UsingPyTorch):参考:本人在网上找了三个相关的代码,但是都有问题,这里记录一下修改哪些地方之后可以跑通。代码一(UsingTensorFlow):代码地址:https://github.com/wallarm/nascell-automl这个代码有详细的说明:TheFirstStep-by-
- NAS with RL(Using TensorFlow)
ThreeS_tones
DRLtensorflow人工智能python
目录代码一:train.pynet_manager.pycnn.pyreinforce.py代码二:train.pycontroller.pymodel.pymanager.pynascell.py代码一:代码地址:nascell-automl-master修改后代码(需要新建几个python文件):train.pyimportnumpyasnpimporttensorflow.compat.v1
- XGBoost系列8——XGBoost的未来:从强化学习到AutoML
theskylife
数据挖掘人工智能机器学习数据挖掘XGboostpython
目录写在开头1.XGBoost在强化学习中的应用1.1构建强化学习问题1.2XGBoost与深度强化学习的对比1.3实际任务中的成功案例2.XGBoost与AutoML的结合2.1XGBoost在自动特征工程中的应用2.2超参数优化和自动模型选择2.3实际案例:XGBoost与AutoML的成功结合3.基于XGBoost的前瞻性研究与发展趋势3.1模型的可解释性提升3.2对非结构化数据的更好适应3
- 机器学习没那么难,Azure AutoML帮你简单3步实现自动化模型训练
AI普惠大师
云计算azuremicrosoft机器学习自动化人工智能
在MachineLearning这个领域,通常训练一个业务模型的难点并不在于算法的选择,而在于前期的数据清理和特征工程这些纷繁复杂的工作,训练过程中的问题在于参数的反复迭代优化。AutoML是AzureDatabricks的一项功能,它自动的对数据进行清理和特征工程并使用数据尝试多种算法和参数来训练最佳机器学习模型。使用这种自动化模型训练可以满足以下业务问题的模型训练:1、分类问题:AutoML可
- 通俗科普文:贝叶斯优化与SMBO、高斯过程回归、TPE(附新书)
科技州与数据州
以下文章来源于SimpleAI,作者郭必扬贝叶斯优化是AutoML中的重要概念,近年来变得很火热。作为一种重要的基于先验的调参/策略选择技术,贝叶斯的应用范围也很广。但这个概念对于初次接触的同学可能较难理解,经过数天的论文研读、博客/教程/代码查阅,我总结了这篇科普文,也手绘了一些示意图,希望尽量在一篇文章内、通俗易懂地讲清楚什么是贝叶斯优化。本文目录:理清基本概念的关系各种超参数调节方法的对比G
- DeepCamera - 将相机转换为AI-Powered with Embedded / Android / Pi等。
Android征途
什么是SharpAIDeepCameraARMGPU上的深度学习视频处理监控,用于人脸识别以及更多方法。将数码相机变成AI供电的相机。使用ARMGPU/NPU的边缘AI生产级平台,利用AutoML。面向开发人员/儿童/家庭/中小企业/企业/云的第一个世界级EdgeAI全栈平台,由社区烘焙。用于深度学习边缘计算设备的完整堆栈系统,特别是使用图像刻录或Androidapk安装的shell设置。移动数据
- automl框架:AutoGluon介绍
李白唱着歌去镇上
automl框架:AutoGluon介绍原理大部分automl框架是基于超参数搜索技术,例如基于贝叶斯搜索的hyperopt技术等AutoGluon则依赖融合多个无需超参数搜索的模型,三个臭皮匠顶个诸葛亮stacking:在同一份数据上训练出多个不同类型的模型,这些模型可以是KNN、tree、核方法等,这些模型的输出进入到一个线性模型里面得到最终的输出,就是对这些输出做加权求和,这里的权重是通过训
- NAS入门(学习笔记)
清风2022
学习笔记NASAutoMLZero-shot深度学习人工智能
文章目录AutoMLNAS初期NAS当前NAS框架One-ShotNAS权重共享策略Zero-ShotNASZen-NASNASWOTEPENAS参考资料AutoML深度学习使特征学习自动化AutoML使深度学习自动化自动化机器学习(automatedmachinelearning)是一种自动化的数据驱动方法,并做出一系列决策。按模型类型划分,分为以下两类:ClassicalML:传统机器学习模型
- AutoKeras
缘起性空、
keras人工智能深度学习python
简介AutoKeras是一个开源的,基于Keras的自动机器学习(AutoML)库。它是一个用于自动化机器学习的开源软件库,提供自动搜索深度学习模型的架构和超参数的功能。相比于传统的机器学习方法,AutoKeras可以自动处理特征工程、模型选择、超参数调优等步骤,大大减少了繁琐的手动操作。AutoKeras旨在简化机器学习模型的开发过程,其基于Keras构建,并提供了一套高级API,使得模型的训练
- 详解数据科学自动化与机器学习自动化
澳鹏Appen
人工智能与机器学习计算机视觉训练数据机器学习自动化人工智能
过去十年里,人工智能(AI)构建自动化发展迅速并取得了多项成就。在关于AI未来的讨论中,您可能会经常听到人们交替使用数据科学自动化与机器学习自动化这两个术语。事实上,这些术语有着不同的定义:如今的自动化机器学习,即AutoML,特指模型构建自动化。但是,数据科学家的工作内容并不仅止于此。简单地说,数据科学家从数据中获取信息,以解决现实世界中的问题;机器学习只是数据科学家的众多工作方法之一。从数据预
- 我们如何在Pinterest Ads中使用AutoML,多任务学习和多塔模型
weixin_26726011
机器学习python人工智能tensorflow深度学习
ErnestWang|SoftwareEngineer,AdsRanking欧内斯特·王|软件工程师,广告排名PeoplecometoPinterestinanexplorationmindset,oftenengagingwithadsthesamewaytheydowithorganicPins.WithinadsourmissionistohelpPinnersgofrominspirati
- 谷歌15个人工智能开源免费项目!开发者:懂了
喜欢打酱油的老鸟
人工智能谷歌15个人工智能开源免费项目
2019-11-2114:37:20关于人工智能的开源项目,相信开发者们已经目睹过不少了,Github上也有大把的资源。不过笔者今天说的并非来自Github,而是来自科技“大厂”Google发布的一些涉及到机器学习、深度学习、神经网络等优质的人工智能开源项目,精心挑选了一部分推荐给大家学习。下面就来看一看。1、AdaNet:快速灵活的AutoML,可自主学习。AdaNet是一个基于TensorFl
- 如何通过 Al 的能力提升编程的效率?
向上的车轮
笔记人工智能
通过人工智能(AI)的技术,可以提升编程效率和能力。以下是一些建议和方法:代码自动生成:使用AI技术,可以根据程序员的需求和输入,自动生成代码。这可以提高编程效率,减少编写代码所需的时间。例如,使用AutoML(自动机器学习)技术,可以根据需求自动生成相应的代码。importrandomclassAnimal:def__init__(self,name,speed):self.name=names
- AutoML 和神经架构搜索初探
linjingyg
架构神经网络人工智能
来自CMU和DeepMind的研究人员最近发布了一篇有趣的新论文,称为可微分网络结构搜索(DARTS),它提供了一种神经网络结构搜索的替代方法,这是目前机器学习领域的一个大热门。神经网络结构搜索去年被大肆吹捧,Google首席执行官SundarPichai和GoogleAI负责人JeffDean宣称,神经网络结构搜索及其所需的大量计算能力对于机器学习的大众化至关重要。科技媒体争相报道了谷歌在神经网
- Azure 机器学习 - 使用受保护工作区时的网络流量流
TechLead KrisChang
azure机器学习人工智能microsoft
目录环境准备入站和出站要求方案:从工作室访问工作区方案:从工作室使用AutoML、设计器、数据集和数据存储方案:使用计算实例和计算群集方案:使用联机终结点入站通信出站通信方案:使用AzureKubernetes服务方案:使用Azure机器学习管理的Docker映像当Azure机器学习工作区和关联的资源在Azure虚拟网络中受保护时,资源之间的网络流量会发生改变。在没有虚拟网络的情况下,网络流量将通
- 实用机器学习-学习笔记
雨浅听风吟
机器学习学习人工智能
文章目录3.5多层感知机3.5.1手动提取特征到学习特征3.5.2线性方法到多层感知机3.5.3代码实现4.2过拟合和欠拟合4.2.1模型选择4.2.2总结9.1模型调参9.1.1思考与总结9.1.2基线baseline9.1.3SGDADAM9.1.4训练代价9.1.5AUTOML9.1.6要多次调参管理9.1.7复现实验的困难9.2超参数的优化9.2.1超参数的范围9.2.2超参数优化的算法黑
- 如何在 Azure 中使用自动机器学习进行模型训练
嵌入式杂谈
azure机器学习microsoft
自动机器学习(AutomatedMachineLearning,简称为AutoML)是一种通过自动化流程来简化模型训练和调优的技术。在Azure机器学习平台中,AutoML提供了丰富的功能和工具,使我们能够快速地训练和优化机器学习模型。本文将介绍如何在Azure中使用自动机器学习进行模型训练,并提供一些实用的技巧和注意事项。一、数据准备:在开始之前,我们需要准备用于训练的数据集。Azure机器学习
- AI调参师会被取代吗?对话AutoML初创公司探智立方
喜欢打酱油的老鸟
人工智能AI调参师探智立方AutoML
1955年,约翰·麦卡锡(JohnMcCarthy)、马文·闵斯基(MarvinMinsky)、克劳德·香农(ClaudeShannon)等人聚在一起,为第二年即将召开的具有重要历史意义的“达特矛斯会议”列了一份AI研究议题,排在首位的就是“AutomaticComputers”——自动编程计算机。作为AI的开山鼻祖,他们在这份纲领里写道:“我们相信,如果精心挑选一批科学家,在一起工作一个夏天,
- 论文笔记系列-Neural Network Search :A Survey
aiwanghuan5017
人工智能数据结构与算法
论文笔记系列-NeuralNetworkSearch:ASurvey论文笔记NASautomlsurveyreviewreinforcementlearningBayesianOptimizationevolutionaryalgorithm注:本文主要是结合自己理解对原文献的总结翻译,有的部分直接翻译成英文不太好理解,所以查阅原文会更直观更好理解。本文主要就SearchSpace、SearchS
- Azure 机器学习 - 使用 ONNX 对来自 AutoML 的计算机视觉模型进行预测
TechLead KrisChang
azure机器学习microsoft人工智能
目录一、环境准备二、下载ONNX模型文件2.1Azure机器学习工作室2.2Azure机器学习PythonSDK2.3生成模型进行批量评分多类图像分类三、加载标签和ONNX模型文件四、获取ONNX模型的预期输入和输出详细信息ONNX模型的预期输入和输出格式多类图像分类多类图像分类输入格式多类图像分类输出格式五、预处理多类图像分类多类图像分类无PyTorch多类图像分类有PyTorch使用ONNX运
- Azure 机器学习 - 设置 AutoML 训练时序预测模型
TechLead KrisChang
azure机器学习microsoft人工智能
目录一、环境准备二、训练和验证数据三、配置试验支持的模型配置设置特征化步骤自定义特征化四、可选配置频率和目标数据聚合启用深度学习目标滚动窗口聚合短时序处理非稳定时序检测和处理五、运行试验六、用最佳模型进行预测用滚动预测评估模型精度预测未来七、大规模预测多模型分层时序预测本文将介绍如何使用Azure机器学习自动化ML为时序预测模型设置AutoML训练。关注TechLead,分享AI全维度知识。作者拥
- Azure 机器学习 - 使用无代码 AutoML 训练分类模型
TechLead KrisChang
机器学习azuremicrosoft人工智能
了解如何在Azure机器学习工作室中使用Azure机器学习自动化ML,通过无代码AutoML来训练分类模型。此分类模型预测某个金融机构的客户是否会认购定期存款产品。关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。一、环境准备Azur
- Azure 机器学习 - 使用 AutoML 和 Python 训练物体检测模型
TechLead KrisChang
azure机器学习microsoft人工智能
目录一、Azure环境准备二、计算目标设置三、试验设置四、直观呈现输入数据五、上传数据并创建MLTable六、配置物体检测试验适用于图像任务的自动超参数扫描(AutoMode)适用于图像任务的手动超参数扫描作业限制七、注册和部署模型获取最佳试用版注册模型配置联机终结点创建终结点配置联机部署创建部署更新流量八、测试部署九、直观呈现检测结果十、清理资源本教程介绍如何通过Azure机器学习PythonS
- 谷歌发布全新AutoML,AI通过图灵测试
AIYStore
AutoML是Google最新的产品,能够根据问题自动确定最优参数和网络结构。它一定程度上再现了AlphaZero的设计理念,也比Zero更直观。GoogleAutoML系统自主编写机器学习代码,其效率在某种程度上竟然超过了专业的研发工程师。AutoML的目标并不是要将人类从开发过程中剥离出去,也不是要开发全新的人工智能,而是让人工智能继续维持某种速度来改变世界。李飞飞在GoogleCloudNe
- JVM StackMapTable 属性的作用及理解
lijingyao8206
jvm字节码Class文件StackMapTable
在Java 6版本之后JVM引入了栈图(Stack Map Table)概念。为了提高验证过程的效率,在字节码规范中添加了Stack Map Table属性,以下简称栈图,其方法的code属性中存储了局部变量和操作数的类型验证以及字节码的偏移量。也就是一个method需要且仅对应一个Stack Map Table。在Java 7版
- 回调函数调用方法
百合不是茶
java
最近在看大神写的代码时,.发现其中使用了很多的回调 ,以前只是在学习的时候经常用到 ,现在写个笔记 记录一下
代码很简单:
MainDemo :调用方法 得到方法的返回结果
- [时间机器]制造时间机器需要一些材料
comsci
制造
根据我的计算和推测,要完全实现制造一台时间机器,需要某些我们这个世界不存在的物质
和材料...
甚至可以这样说,这种材料和物质,我们在反应堆中也无法获得......
 
- 开口埋怨不如闭口做事
邓集海
邓集海 做人 做事 工作
“开口埋怨,不如闭口做事。”不是名人名言,而是一个普通父亲对儿子的训导。但是,因为这句训导,这位普通父亲却造就了一个名人儿子。这位普通父亲造就的名人儿子,叫张明正。 张明正出身贫寒,读书时成绩差,常挨老师批评。高中毕业,张明正连普通大学的分数线都没上。高考成绩出来后,平时开口怨这怨那的张明正,不从自身找原因,而是不停地埋怨自己家庭条件不好、埋怨父母没有给他创造良好的学习环境。
- jQuery插件开发全解析,类级别与对象级别开发
IT独行者
jquery开发插件 函数
jQuery插件的开发包括两种: 一种是类级别的插件开发,即给
jQuery添加新的全局函数,相当于给
jQuery类本身添加方法。
jQuery的全局函数就是属于
jQuery命名空间的函数,另一种是对象级别的插件开发,即给
jQuery对象添加方法。下面就两种函数的开发做详细的说明。
1
、类级别的插件开发 类级别的插件开发最直接的理解就是给jQuer
- Rome解析Rss
413277409
Rome解析Rss
import java.net.URL;
import java.util.List;
import org.junit.Test;
import com.sun.syndication.feed.synd.SyndCategory;
import com.sun.syndication.feed.synd.S
- RSA加密解密
无量
加密解密rsa
RSA加密解密代码
代码有待整理
package com.tongbanjie.commons.util;
import java.security.Key;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerat
- linux 软件安装遇到的问题
aichenglong
linux遇到的问题ftp
1 ftp配置中遇到的问题
500 OOPS: cannot change directory
出现该问题的原因:是SELinux安装机制的问题.只要disable SELinux就可以了
修改方法:1 修改/etc/selinux/config 中SELINUX=disabled
2 source /etc
- 面试心得
alafqq
面试
最近面试了好几家公司。记录下;
支付宝,面试我的人胖胖的,看着人挺好的;博彦外包的职位,面试失败;
阿里金融,面试官人也挺和善,只不过我让他吐血了。。。
由于印象比较深,记录下;
1,自我介绍
2,说下八种基本类型;(算上string。楼主才答了3种,哈哈,string其实不是基本类型,是引用类型)
3,什么是包装类,包装类的优点;
4,平时看过什么书?NND,什么书都没看过。。照样
- java的多态性探讨
百合不是茶
java
java的多态性是指main方法在调用属性的时候类可以对这一属性做出反应的情况
//package 1;
class A{
public void test(){
System.out.println("A");
}
}
class D extends A{
public void test(){
S
- 网络编程基础篇之JavaScript-学习笔记
bijian1013
JavaScript
1.documentWrite
<html>
<head>
<script language="JavaScript">
document.write("这是电脑网络学校");
document.close();
</script>
</h
- 探索JUnit4扩展:深入Rule
bijian1013
JUnitRule单元测试
本文将进一步探究Rule的应用,展示如何使用Rule来替代@BeforeClass,@AfterClass,@Before和@After的功能。
在上一篇中提到,可以使用Rule替代现有的大部分Runner扩展,而且也不提倡对Runner中的withBefores(),withAfte
- [CSS]CSS浮动十五条规则
bit1129
css
这些浮动规则,主要是参考CSS权威指南关于浮动规则的总结,然后添加一些简单的例子以验证和理解这些规则。
1. 所有的页面元素都可以浮动 2. 一个元素浮动后,会成为块级元素,比如<span>,a, strong等都会变成块级元素 3.一个元素左浮动,会向最近的块级父元素的左上角移动,直到浮动元素的左外边界碰到块级父元素的左内边界;如果这个块级父元素已经有浮动元素停靠了
- 【Kafka六】Kafka Producer和Consumer多Broker、多Partition场景
bit1129
partition
0.Kafka服务器配置
3个broker
1个topic,6个partition,副本因子是2
2个consumer,每个consumer三个线程并发读取
1. Producer
package kafka.examples.multibrokers.producers;
import java.util.Properties;
import java.util.
- zabbix_agentd.conf配置文件详解
ronin47
zabbix 配置文件
Aliaskey的别名,例如 Alias=ttlsa.userid:vfs.file.regexp[/etc/passwd,^ttlsa:.:([0-9]+),,,,\1], 或者ttlsa的用户ID。你可以使用key:vfs.file.regexp[/etc/passwd,^ttlsa:.: ([0-9]+),,,,\1],也可以使用ttlsa.userid。备注: 别名不能重复,但是可以有多个
- java--19.用矩阵求Fibonacci数列的第N项
bylijinnan
fibonacci
参考了网上的思路,写了个Java版的:
public class Fibonacci {
final static int[] A={1,1,1,0};
public static void main(String[] args) {
int n=7;
for(int i=0;i<=n;i++){
int f=fibonac
- Netty源码学习-LengthFieldBasedFrameDecoder
bylijinnan
javanetty
先看看LengthFieldBasedFrameDecoder的官方API
http://docs.jboss.org/netty/3.1/api/org/jboss/netty/handler/codec/frame/LengthFieldBasedFrameDecoder.html
API举例说明了LengthFieldBasedFrameDecoder的解析机制,如下:
实
- AES加密解密
chicony
加密解密
AES加解密算法,使用Base64做转码以及辅助加密:
package com.wintv.common;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import sun.misc.BASE64Decod
- 文件编码格式转换
ctrain
编码格式
package com.test;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
- mysql 在linux客户端插入数据中文乱码
daizj
mysql中文乱码
1、查看系统客户端,数据库,连接层的编码
查看方法: http://daizj.iteye.com/blog/2174993
进入mysql,通过如下命令查看数据库编码方式: mysql> show variables like 'character_set_%'; +--------------------------+------
- 好代码是廉价的代码
dcj3sjt126com
程序员读书
长久以来我一直主张:好代码是廉价的代码。
当我跟做开发的同事说出这话时,他们的第一反应是一种惊愕,然后是将近一个星期的嘲笑,把它当作一个笑话来讲。 当他们走近看我的表情、知道我是认真的时,才收敛一点。
当最初的惊愕消退后,他们会用一些这样的话来反驳: “好代码不廉价,好代码是采用经过数十年计算机科学研究和积累得出的最佳实践设计模式和方法论建立起来的精心制作的程序代码。”
我只
- Android网络请求库——android-async-http
dcj3sjt126com
android
在iOS开发中有大名鼎鼎的ASIHttpRequest库,用来处理网络请求操作,今天要介绍的是一个在Android上同样强大的网络请求库android-async-http,目前非常火的应用Instagram和Pinterest的Android版就是用的这个网络请求库。这个网络请求库是基于Apache HttpClient库之上的一个异步网络请求处理库,网络处理均基于Android的非UI线程,通
- ORACLE 复习笔记之SQL语句的优化
eksliang
SQL优化Oracle sql语句优化SQL语句的优化
转载请出自出处:http://eksliang.iteye.com/blog/2097999
SQL语句的优化总结如下
sql语句的优化可以按照如下六个步骤进行:
合理使用索引
避免或者简化排序
消除对大表的扫描
避免复杂的通配符匹配
调整子查询的性能
EXISTS和IN运算符
下面我就按照上面这六个步骤分别进行总结:
- 浅析:Android 嵌套滑动机制(NestedScrolling)
gg163
android移动开发滑动机制嵌套
谷歌在发布安卓 Lollipop版本之后,为了更好的用户体验,Google为Android的滑动机制提供了NestedScrolling特性
NestedScrolling的特性可以体现在哪里呢?<!--[if !supportLineBreakNewLine]--><!--[endif]-->
比如你使用了Toolbar,下面一个ScrollView,向上滚
- 使用hovertree菜单作为后台导航
hvt
JavaScriptjquery.nethovertreeasp.net
hovertree是一个jquery菜单插件,官方网址:http://keleyi.com/jq/hovertree/ ,可以登录该网址体验效果。
0.1.3版本:http://keleyi.com/jq/hovertree/demo/demo.0.1.3.htm
hovertree插件包含文件:
http://keleyi.com/jq/hovertree/css
- SVG 教程 (二)矩形
天梯梦
svg
SVG <rect> SVG Shapes
SVG有一些预定义的形状元素,可被开发者使用和操作:
矩形 <rect>
圆形 <circle>
椭圆 <ellipse>
线 <line>
折线 <polyline>
多边形 <polygon>
路径 <path>
- 一个简单的队列
luyulong
java数据结构队列
public class MyQueue {
private long[] arr;
private int front;
private int end;
// 有效数据的大小
private int elements;
public MyQueue() {
arr = new long[10];
elements = 0;
front
- 基础数据结构和算法九:Binary Search Tree
sunwinner
Algorithm
A binary search tree (BST) is a binary tree where each node has a Comparable key (and an associated value) and satisfies the restriction that the key in any node is larger than the keys in all
- 项目出现的一些问题和体会
Steven-Walker
DAOWebservlet
第一篇博客不知道要写点什么,就先来点近阶段的感悟吧。
这几天学了servlet和数据库等知识,就参照老方的视频写了一个简单的增删改查的,完成了最简单的一些功能,使用了三层架构。
dao层完成的是对数据库具体的功能实现,service层调用了dao层的实现方法,具体对servlet提供支持。
&
- 高手问答:Java老A带你全面提升Java单兵作战能力!
ITeye管理员
java
本期特邀《Java特种兵》作者:谢宇,CSDN论坛ID: xieyuooo 针对JAVA问题给予大家解答,欢迎网友积极提问,与专家一起讨论!
作者简介:
淘宝网资深Java工程师,CSDN超人气博主,人称“胖哥”。
CSDN博客地址:
http://blog.csdn.net/xieyuooo
作者在进入大学前是一个不折不扣的计算机白痴,曾经被人笑话过不懂鼠标是什么,