最基本的蚁群算法优化(ACO)算法——蚂蚁系统(AS)(TSP问题)

一、实验项目: 蚁群算法优化
二、实验目的:
理解并掌握蚁群算法的基本原理、思想,能够实现基本的蚁群算法,并利用蚁群算法求解旅行商(TSP)问题
三、实验内容:
1、旅行商问题:一个商人去N个城市卖货,要求所有城市都只走一遍,再回到起点,使得所走的路线最短
2、编程实现蚁群算法,并验证算法的正确性
3、实验数据如下:一共有10个城市,单元格表示行标和列表之间的距离(单位km),例如118表示北京和天津的距离为118km
最基本的蚁群算法优化(ACO)算法——蚂蚁系统(AS)(TSP问题)_第1张图片

4、自定义相关参数,记录实验数据(迭代次数,每一代的最短路线长度)

代码:

import random
import math
import copy
import matplotlib.pyplot as plt

# 参数设置
max = 10000     # 设置一个最大距离,为了表示自己到自己不可达。
ant_num = 12      # 蚂蚁数目
alpha = 1       # 信息素因子
beta = 2       # 启发函数因子
rho = 0.5    # 信息挥发因子
city_num = 10   # 城市数量

best_ants_total_distance = []   # 记录每次迭代最优解  用于画图

# 城市距离矩阵
citys_distance = [[max,118,1272,2567,1653,2097,1425,1177,3947,1574],
                [118,max,1253,2511,1633,2077,1369,1157,3961,1518],
                [1272,1253,max,1462,380,1490,821,856,3660,385],
                [2567,2511,1462,max,922,2335,1562,2165,3995,993],
                [1653,1633,380,922,max,1700,1041,1135,3870,456],
                [2097,2077,1490,2335,1700,max,2311,920,2170,1920],
                [1425,1369,821,1562,1041,2311,max,1420,4290,626],
                [1177,1157,856,2165,1135,920,1420,max,2870,1290],
                [3947,3961,3660,3995,3870,2170,4290,2870,max,4090],
                [1574,1518,385,993,456,1920,626,1290,4090,max]]

# 城市索引表
citys = ['北京','天津','武汉','深圳','长沙','成都','杭州','西安','拉萨','南昌']

# 贪婪算法求C_nn
def Greedy():
    L = []
    k = 0
    L.append(k)
    for i in range(city_num):
        temp = max
        m = k
        for j in range(city_num):
            if(((j) not in L) and citys_distance[m][j]<temp):
                temp = citys_distance[m][j]
                k=j
        L.append(k)
    C_nn = 0

    for i in range(len(L)):
        C_nn = C_nn + citys_distance[L[i]][L[(i+1)%10]] 
    return C_nn

class Ant():
    # 初始化
    def __init__(self,id):

        self.ID = id
        self.clean_data()

    def clean_data(self):
        self.path = []
        self.total_distance = 0.0
        self.move_times = 0
        start = random.randint(0,city_num-1)

        self.current_city = start
        self.open_table_city = [True for i in range(city_num)]
        self.path.append(self.current_city)
        self.open_table_city[start] = False
        self.move_times = 1
    # 选择下一个城市
    def choice_next_city(self):

        next_city = -1
        select_citys_prob = [0.0 for i in range(city_num)]
        total_prob = 0.0

        # 获取去下一个城市的概率
        for i in range(city_num):
            if self.open_table_city[i]:
                select_citys_prob[i] = pow(pheromone[self.current_city][i],alpha) * pow(1.0/citys_distance[self.current_city][i],beta)
                total_prob += select_citys_prob[i]
            
        # 轮盘选择城市
        if total_prob > 0.0:
            # 产生一个随机概率: 0.0 ~ total_prob
            temp_prob = random.uniform(0.0,total_prob)
            for i in range(city_num):
                if self.open_table_city[i]:
                    # 轮次相减
                    temp_prob -= select_citys_prob[i]
                    if temp_prob < 0.0:
                        next_city = i
                        break

        if (next_city == -1):
            next_city = random.randint(0,city_num-1)
            while ((self.open_table_city[next_city]) == False):
                next_city = random.randint(0,city_num-1)

        return next_city

    # 移动
    def move(self,next_city):
        
        self.path.append(next_city)
        self.open_table_city[next_city] = False
        self.total_distance += citys_distance[self.current_city][next_city]
        self.current_city = next_city
        self.move_times += 1
    
    # 搜索路径
    def search_path(self):

        # 初始化数据
        self.clean_data()

        # 搜索路径,遍历所有城市
        while self.move_times < city_num:
            # 移动下一城市
            next_city = self.choice_next_city()
            self.move(next_city)

        # 回路 计算总距离
        last_distance = citys_distance[self.path[-1]][self.path[0]]
        self.total_distance += last_distance

class TSP():
    # 初始化
    def __init__(self,n):
        self.runnum = n     # 初始迭代次数
        self.ants = [Ant(ID) for ID in range(ant_num)]      # 初始蚁群
        self.best_ant = Ant(-1)     # 初始最优解
        self.best_ant.total_distance = 1000000      # 初始最大距离

    def search_path(self):
        for i in range(self.runnum):
            # 遍历每一只蚂蚁
            for ant in self.ants:
                # 搜索一条路径
                ant.search_path()
                # 与当前最优蚂蚁比较
                if ant.total_distance < self.best_ant.total_distance:
                    # 更新最优解
                    self.best_ant = copy.deepcopy(ant)
            # 更新信息素
            self.update_pheromone()
            best_ants_total_distance.append(self.best_ant.total_distance)
            # break
            # if(i%10 == 0):
            print("第{0}次迭代,最短路线长度:{1}km".format(i+1,self.best_ant.total_distance))
        print("迭代次数:{0},最佳路径总距离:{1}km".format(i+1,self.best_ant.total_distance))
        print("最优解路径如下:")
        for i in range(city_num):
            if(i==city_num-1):
                print(citys[self.best_ant.path[i]])
            else:
                print("{0}-->".format(citys[self.best_ant.path[i]]),end='')

        

                
    
    # 更新信息素
    def update_pheromone(self):
        
        # 获取每只蚂蚁在其路径上留下的信息素
        temp_pheromone = [[0.0 for col in range(city_num)] for raw in range(city_num)]
        for ant in self.ants:
            for i in range(1,city_num):
                start,end = ant.path[i-1] ,ant.path[i]
                # 在路径上的每两个相邻城市捡留下的信息素,与路径总距离成反比
                temp_pheromone[start][end] += 1 / ant.total_distance
                temp_pheromone[end][start] = temp_pheromone[start][end]

        # 更新所有城市之间的信息素,就的信息素衰减加上新迭代信息素 
        for i in range(city_num):
            for j in range(city_num):
                pheromone[i][j] = pheromone[i][j] * rho + temp_pheromone[i][j]

if __name__ == "__main__":
    global pheromone
    C_nn = Greedy()
    pheromone = [[ant_num/C_nn for col in range(city_num)] for raw in range(city_num)]
    TSP(20).search_path()

    # 画图
    X = [x for x in range(1,21)]
    Y = best_ants_total_distance
    plt.plot(X,Y)
    plt.show()



运行结果:
(1)迭代次数、每一代的最短路径长度、最佳路径总距离及最优解路径
最基本的蚁群算法优化(ACO)算法——蚂蚁系统(AS)(TSP问题)_第2张图片
(2)算法优化的收敛曲线
最基本的蚁群算法优化(ACO)算法——蚂蚁系统(AS)(TSP问题)_第3张图片

你可能感兴趣的:(智能计算,蚁群优化算法(ACO),蚂蚁系统(AS),TCP问题,计算智能,进化算法)