Flink 统计当日的UV、PV
测试环境:
flink 1.7.2
1、数据流程
a.模拟数据生成,发送到kafka(json 格式)
b.flink 读取数据,count
c. 输出数据到kafka(为了方便查看,输出了一份到控制台)
2、模拟数据生成器
数据格式如下 : {"id" : 1, "createTime" : "2019-05-24 10:36:43.707"}
id 为数据生成的序号(累加),时间为数据时间(默认为数据生成时间)
模拟数据生成器代码如下:
/** * test data maker */ object CurrentDayMaker { var minute : Int = 1 val calendar: Calendar = Calendar.getInstance() /** * 一天时间比较长,不方便观察,将时间改为当前时间, * 每次累加10分钟,这样一天只需要144次循环,也就是144秒 * @return */ def getCreateTime(): String = { // minute = minute + 1 calendar.add(Calendar.MINUTE, 10) sdf.format(calendar.getTime) } val sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS") def main(args: Array[String]): Unit = { val producer = new KafkaProducer[String, String](Common.getProp)
// 初始化开始时间为当前时间 calendar.setTime(new Date()) println(sdf.format(calendar.getTime)) var i =0; while (true) { // val map = Map("id"-> i, "createTime"-> sdf.format(System.currentTimeMillis())) val map = Map("id"-> i, "createTime"-> getCreateTime()) val jsonObject: JSONObject = new JSONObject(map) println(jsonObject.toString()) // topic current_day val msg = new ProducerRecord[String, String]("current_day", jsonObject.toString()) producer.send(msg) producer.flush()
// 控制数据频率 Thread.sleep(1000) i = i + 1 } } }
生成数据如下:
{"id" : 0, "createTime" : "2019-05-24 18:02:26.292"} {"id" : 1, "createTime" : "2019-05-24 18:12:26.292"} {"id" : 2, "createTime" : "2019-05-24 18:22:26.292"} {"id" : 3, "createTime" : "2019-05-24 18:32:26.292"} {"id" : 4, "createTime" : "2019-05-24 18:42:26.292"}
3、flink 程序
package com.venn.stream.api.dayWindow import java.io.File import java.text.SimpleDateFormat import com.venn.common.Common import com.venn.source.TumblingEventTimeWindows import org.apache.flink.api.common.functions.ReduceFunction import org.apache.flink.api.common.serialization.SimpleStringSchema import org.apache.flink.api.scala._ import org.apache.flink.contrib.streaming.state.RocksDBStateBackend import org.apache.flink.formats.json.JsonNodeDeserializationSchema import org.apache.flink.shaded.jackson2.com.fasterxml.jackson.databind.node.ObjectNode import org.apache.flink.streaming.api.TimeCharacteristic import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment import org.apache.flink.streaming.api.windowing.time.Time import org.apache.flink.streaming.api.windowing.triggers.{ContinuousEventTimeTrigger} import org.apache.flink.streaming.connectors.kafka.{FlinkKafkaConsumer, FlinkKafkaProducer} /** * Created by venn on 19-5-23. * * use TumblingEventTimeWindows count current day pv * for test, update day window to minute window * * .windowAll(TumblingEventTimeWindows.of(Time.minutes(1), Time.seconds(0))) * TumblingEventTimeWindows can ensure count o minute event, * and time start at 0 second (like : 00:00:00 to 00:00:59) * */ object CurrentDayPvCount { def main(args: Array[String]): Unit = { println(1558886400000L - (1558886400000L - 8 + 86400000) % 86400000) // environment val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) env.setParallelism(1) if ("\\".equals(File.pathSeparator)) { val rock = new RocksDBStateBackend(Common.CHECK_POINT_DATA_DIR) env.setStateBackend(rock) // checkpoint interval env.enableCheckpointing(10000) } val topic = "current_day" val sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS") val kafkaSource = new FlinkKafkaConsumer[ObjectNode](topic, new JsonNodeDeserializationSchema(), Common.getProp) val sink = new FlinkKafkaProducer[String](topic + "_out", new SimpleStringSchema(), Common.getProp) sink.setWriteTimestampToKafka(true) val stream = env.addSource(kafkaSource) .map(node => { Event(node.get("id").asText(), node.get("createTime").asText()) }) // .assignAscendingTimestamps(event => sdf.parse(event.createTime).getTime) .assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[Event](Time.seconds(60)) { override def extractTimestamp(element: Event): Long = { sdf.parse(element.createTime).getTime } }) // window is one minute, start at 0 second //.windowAll(TumblingEventTimeWindows.of(Time.minutes(1), Time.seconds(0))) // window is one hour, start at 0 second 注意事件时间,需要事件触发,在窗口结束的时候可能没有数据,有数据的时候,已经是下一个窗口了 // .windowAll(TumblingEventTimeWindows.of(Time.hours(1), Time.seconds(0))) // window is one day, start at 0 second, todo there have a bug(FLINK-11326), can't use negative number, 1.8 修复 // .windowAll(TumblingEventTimeWindows.of(Time.days(1))) .windowAll(TumblingEventTimeWindows.of(Time.days(1), Time.hours(-8))) // every event one minute // .trigger(ContinuousEventTimeTrigger.of(Time.seconds(3800))) // every process one minute // .trigger(ContinuousProcessingTimeTrigger.of(Time.seconds(10))) // every event, export current value, // .trigger(CountTrigger.of(1)) .reduce(new ReduceFunction[Event] { override def reduce(event1: Event, event2: Event): Event = { // 将结果中,id的最小值和最大值输出 new Event(event1.id, event2.id, event1.count + event2.count) } }) // format output even, connect min max id, add current timestamp // .map(event => Event(event.id + "-" + event.createTime, sdf.format(System.currentTimeMillis()), event.count)) stream.print("result : ") // execute job env.execute("CurrentDayCount") } } case class Event(id: String, createTime: String, count: Int = 1) {}
4、运行结果
测试数据如下:
{"id" : 0, "createTime" : "2019-05-24 20:29:49.102"}
{"id" : 1, "createTime" : "2019-05-24 20:39:49.102"}
...
{"id" : 20, "createTime" : "2019-05-24 23:49:49.102"}
{"id" : 21, "createTime" : "2019-05-24 23:59:49.102"}
{"id" : 22, "createTime" : "2019-05-25 00:09:49.102"}
{"id" : 23, "createTime" : "2019-05-25 00:19:49.102"}
...
{"id" : 163, "createTime" : "2019-05-25 23:39:49.102"}
{"id" : 164, "createTime" : "2019-05-25 23:49:49.102"}
{"id" : 165, "createTime" : "2019-05-25 23:59:49.102"}
{"id" : 166, "createTime" : "2019-05-26 00:09:49.102"}
...
{"id" : 308, "createTime" : "2019-05-26 23:49:49.102"}
{"id" : 309, "createTime" : "2019-05-26 23:59:49.102"}
{"id" : 310, "createTime" : "2019-05-27 00:09:49.102"}
0 - 21 是 24号
22 - 165 是 25 号
166 - 309 是 26 号
输出结果(程序中reduce 方法,将窗口中第一条和最后一条数据的id,都放到 Event中 )如下:
与测试数据对应
5、说明
很多人会错误的以为,窗口时间的开始时间会是程序启动(初始化)的时间。事实上,窗口(以TumblingEventTimeWindows为例)的定义有两个重载的方法:包含两个参数,窗口的长度和窗口的offset(默认为0)
源码:org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows :
@PublicEvolving public class TumblingEventTimeWindows extends WindowAssigner
每条数据都会触发: assignWindows 方法
计算函数如下:
public static long getWindowStartWithOffset(long timestamp, long offset, long windowSize) { return timestamp - (timestamp - offset + windowSize) % windowSize; }
dubug 如下:
6、特别说明
FLink 1.6.3/1.7.1/1.7.2 在 TumblingEventTimeWindows 构造器上有个bug:offset 不能小于0, 但是of 方法中又说明,可以使用: of(Time.days(1),Time.hours(-8)) 表示在中国的 0 点开始的一天窗口。
JIRA : FLINK-11326 ,jira 上注明1.8.0 修复。(我本来准备提个bug的,有人先下手了)
这个bug 可以通过自己创建一个相同包的相同类,将对应代码修改即可。
flink 1.7.2 源码:
protected TumblingEventTimeWindows(long size, long offset) { if (offset < 0 || offset >= size) { throw new IllegalArgumentException("TumblingEventTimeWindows parameters must satisfy 0 <= offset < size"); } this.size = size; this.offset = offset; }
最新版源码:
protected TumblingEventTimeWindows(long size, long offset) { if (Math.abs(offset) >= size) { throw new IllegalArgumentException("TumblingEventTimeWindows parameters must satisfy abs(offset) < size"); } this.size = size; this.offset = offset; }
修改:
7、上面的案例主要讲Flink 的窗口,pv、uv核心代码如下:
.keyBy(0) .window(TumblingProcessingTimeWindows.of(Time.days(1), Time.hours(-8))) .trigger(ContinuousProcessingTimeTrigger.of(Time.seconds(10))) .evictor(TimeEvictor.of(Time.seconds(0), true)) .process(new ProcessWindowFunction[(String, String), (String, String, Long), Tuple, TimeWindow] { /* 这是使用state是因为,窗口默认只会在创建结束的时候触发一次计算,然后数据结果, 如果长时间的窗口,比如:一天的窗口,要是等到一天结束在输出结果,那还不如跑批。 所有大窗口会添加trigger,以一定的频率输出中间结果。 加evictor 是因为,每次trigger,触发计算是,窗口中的所有数据都会参与,所以数据会触发很多次,比较浪费,加evictor 驱逐已经计算过的数据,就不会重复计算了 驱逐了已经计算过的数据,导致窗口数据不完全,所以需要state 存储我们需要的中间结果 */ var wordState: MapState[String, String] = _ var pvCount: ValueState[Long] = _ override def open(parameters: Configuration): Unit = { // new MapStateDescriptor[String, String]("word", classOf[String], classOf[String]) wordState = getRuntimeContext.getMapState(new MapStateDescriptor[String, String]("word", classOf[String], classOf[String])) pvCount = getRuntimeContext.getState[Long](new ValueStateDescriptor[Long]("pvCount", classOf[Long])) } override def process(key: Tuple, context: Context, elements: Iterable[(String, String)], out: Collector[(String, String, Long)]): Unit = { var pv = 0; val elementsIterator = elements.iterator // 遍历窗口数据,获取唯一word while (elementsIterator.hasNext) { pv += 1 val word = elementsIterator.next()._2 wordState.put(word, null) } // add current pvCount.update(pvCount.value() + pv) var count: Long = 0 val wordIterator = wordState.keys().iterator() while (wordIterator.hasNext) { wordIterator.next() count += 1 } // uv out.collect((key.getField(0), "uv", count)) out.collect(key.getField(0), "pv", pv) } })
完整代码见: https://github.com/springMoon/flink-rookie/blob/master/src/main/scala/com/venn/demo/WordCountDistinct.scala