洛谷 普及组 P1031 均分纸牌

题目描述

有N堆纸牌,编号分别为 1,2,…,N。每堆上有若干张,但纸牌总数必为N的倍数。可以在任一堆上取若干张纸牌,然后移动。

移牌规则为:在编号为1堆上取的纸牌,只能移到编号为2的堆上;在编号为N的堆上取的纸牌,只能移到编号为N−1的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。

现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。

例如N=4,4堆纸牌数分别为:①9②8③17④6

移动3次可达到目的:从 ③ 取4张牌放到 ④ (9,8,13,10)-> 从 ③ 取3张牌放到 ②(9,11,10,10)-> 从 ② 取11张牌放到①(10,10,10,10)。

输入格式

两行

第一行为:N(N 堆纸牌)

第二行为:A_{1},A_{2},...,A_{n}​ (N堆纸牌,每堆纸牌初始数)

输出格式

一行:所有堆均达到相等时的最少移动次数。

数据范围

对于100%的数据,1 ≤ N ≤ 100,1 ≤ A_{i} ​≤ 10000

输入输出样例

  输入

4
9 8 17 6

  输出

3

思路

可以看成每一堆都只能从后一堆拿牌,逐堆处理。但这种情况下可能出现某堆变成负数。例如有5堆,每堆一开始分别为6,3,12,1,28。

洛谷 普及组 P1031 均分纸牌_第1张图片洛谷 普及组 P1031 均分纸牌_第2张图片

可以发现最终结果都是4次,因此过程出现负数不要紧,因为要求的是最少移动次数。

#include
using namespace std;
#define maxn 100
int main()
{
	int n, sum = 0, ans = 0; //堆数,纸牌总数,移动次数 
	int p[maxn];
	cin >> n;
	for(int i = 0; i < n; i++){
		cin >> p[i];
		sum += p[i];		
	}
	sum /= n; //每堆纸牌要达到的数目 
	for(int i = 0; i < n; i++)
		if(p[i] - sum != 0){
			p[i+1] += p[i] - sum;
			ans++;			
		}
	cout << ans << endl;
	return 0;
}

补充:每堆只从后一堆拿牌实质是打破从相邻堆拿牌的局限,例如图1的第1次移动可以看成从第2堆拿了3,从第3堆拿了1使第1堆凑到10。第1堆既然完成了,就不动它,第2堆也只从后面有多余牌的堆拿牌,那么可以发现每堆都是从后面堆拿牌凑够10。

洛谷 普及组 P1031 均分纸牌_第3张图片

你可能感兴趣的:(洛谷刷题日记)