极大似然估计详解
下面用MATLAB实现正态分布的ML估计
% 二维正态分布的两分类问题 (ML估计)
clc;
clear;
% 两个类别数据的均值向量
Mu = [0 0; 3 3]';
% 协方差矩阵
S1 = 0.8 * eye(2);
S(:, :, 1) = S1;
S(:, :, 2) = S1;
% 先验概率(类别分布)
P = [1/3 2/3]';
% 样本数据规模
% 收敛性:无偏或者渐进无偏,当样本数目增加时,收敛性质会更好
N = 500;
% 1.生成训练和测试数据
%{
生成训练样本
N = 500, c = 2, d = 2
μ1=[0, 0]' μ2=[3, 3]'
S1=S2=[0.8, 0; 0.8, 0]
p(w1)=1/3 p(w2)=2/3
%}
randn('seed', 0);
[X_train, Y_train] = generate_gauss_classes(Mu, S, P, N);
figure();
hold on;
class1_data = X_train(:, Y_train==1);
class2_data = X_train(:, Y_train==2);
plot(class1_data(1, :), class1_data(2, :), 'r.');
plot(class2_data(1, :), class2_data(2, :), 'g.');
grid on;
title('训练样本');
xlabel('N=500');
%{
用同样的方法生成测试样本
N = 500, c = 2, d = 2
μ1=[0, 0]' μ2=[3, 3]'
S1=S2=[0.8, 0; 0.8, 0]
p(w1)=1/3 p(w2)=2/3
%}
randn('seed', 100);
[X_test, Y_test] = generate_gauss_classes(Mu, S, P, N);
figure();
hold on;
test1_data = X_test(:, Y_test==1);
test2_data = X_test(:, Y_test==2);
plot(test1_data(1, :), test1_data(2, :), 'r.');
plot(test2_data(1, :), test2_data(2, :), 'g.');
grid on;
title('测试样本');
xlabel('N=500');
% 2.用训练样本采用ML方法估计参数
% 各类样本只包含本类分布的信息,也就是说不同类别的参数在函数上是独立的
[mu1_hat, s1_hat] = gaussian_ML_estimate(class1_data);
[mu2_hat, s2_hat] = gaussian_ML_estimate(class2_data);
mu_hat = [mu1_hat, mu2_hat];
s_hat = (1/2) * (s1_hat + s2_hat);
% 3.用测试样本和估计出的参数进行分类
% 使用欧式距离进行分类
z_euclidean = euclidean_classifier(mu_hat, X_test);
% 使用贝叶斯方法进行分类
z_bayesian = bayes_classifier(Mu, S, P, X_test);
% 4.计算不同方法分类的误差
err_euclidean = ( 1-length(find(Y_test == z_euclidean')) / length(Y_test) );
err_bayesian = ( 1-length(find(Y_test == z_bayesian')) / length(Y_test) );
% 输出信息
disp(['基于欧式距离分类的误分率:', num2str(err_euclidean)]);
disp(['基于最小错误率贝叶斯分类的误分率:', num2str(err_bayesian)]);
% 画图展示
figure();
hold on;
z_euclidean = transpose(z_euclidean);
o = 1;
q = 1;
for i = 1:size(X_test, 2)
if Y_test(i) ~= z_euclidean(i)
plot(X_test(1,i), X_test(2,i), 'bo');
elseif z_euclidean(i)==1
euclidean_classifier_results1(:, o) = X_test(:, i);
o = o+1;
elseif z_euclidean(i)==2
euclidean_classifier_results2(:, q) = X_test(:, i);
q = q+1;
end
end
plot(euclidean_classifier_results1(1, :), euclidean_classifier_results1(2, :), 'r.');
plot(euclidean_classifier_results2(1, :), euclidean_classifier_results2(2, :), 'g.');
title(['基于欧式距离分类,误分率为:', num2str(err_euclidean)]);
grid on;
figure();
hold on;
z_bayesian = transpose(z_bayesian);
o = 1;
q = 1;
for i = 1:size(X_test, 2)
if Y_test(i) ~= z_bayesian(i)
plot(X_test(1,i), X_test(2,i), 'bo');
elseif z_bayesian(i)==1
bayesian_classifier_results1(:, o) = X_test(:, i);
o = o+1;
elseif z_bayesian(i)==2
bayesian_classifier_results2(:, q) = X_test(:, i);
q = q+1;
end
end
plot(bayesian_classifier_results1(1, :), bayesian_classifier_results1(2, :), 'r.');
plot(bayesian_classifier_results2(1, :), bayesian_classifier_results2(2, :), 'g.');
title(['基于最小错误率的贝叶斯决策分类,误分率为:', num2str(err_bayesian)]);
grid on;
function [ data, C ] = generate_gauss_classes( M, S, P, N )
%{
函数功能:
生成样本数据,符合正态分布
参数说明:
M:数据的均值向量
S:数据的协方差矩阵
P:各类样本的先验概率,即类别分布
N:样本规模
函数返回
data:样本数据(2*N维矩阵)
C:样本数据的类别信息
%}
[~, c] = size(M);
data = [];
C = [];
for j = 1:c
% z = mvnrnd(mu,sigma,n);
% 产生多维正态随机数,mu为期望向量,sigma为协方差矩阵,n为规模。
% fix 函数向零方向取整
t = mvnrnd(M(:,j), S(:,:,j), fix(P(j)*N))';
data = [data t];
C = [C ones(1, fix(P(j) * N)) * j];
end
end
function [ m_hat, s_hat ] = gaussian_ML_estimate( X )
%{
函数功能:
样本正态分布的最大似然估计
参数说明:
X:训练样本
函数返回:
m_hat:样本由极大似然估计得出的正态分布参数,均值
s_hat:样本由极大似然估计得出的正态分布参数,方差
%}
% 样本规模
[~, N] = size(X);
% 正态分布样本总体的未知均值μ的极大似然估计就是训练样本的算术平均
m_hat = (1/N) * sum(transpose(X))';
% 正态分布中的协方差阵Σ的最大似然估计量等于N个矩阵的算术平均值
s_hat = zeros(1);
for k = 1:N
s_hat = s_hat + (X(:, k)-m_hat) * (X(:, k)-m_hat)';
end
s_hat = (1/N)*s_hat;
end
% 详细的计算过程推导可以参考前一篇博客:极大似然估计详解。
基于欧式距离的分类:
function [ z ] = euclidean_classifier( m, X )
%{
函数功能:
利用欧式距离对测试数据进行分类
参数说明:
m:数据的均值,由ML对训练数据,参数估计得到
X:我们需要测试的数据
函数返回:
z:数据所属的分类
%}
[~, c] = size(m);
[~, n] = size(X);
z = zeros(n, 1);
de = zeros(c, 1);
for i = 1:n
for j = 1:c
de(j) = sqrt( (X(:,i)-m(:,j))' * (X(:,i)-m(:,j)) );
end
[~, z(i)] = min(de);
end
end
function [ z ] = bayes_classifier( m, S, P, X )
%{
函数功能:
利用基于最小错误率的贝叶斯对测试数据进行分类
参数说明:
m:数据的均值
S:数据的协方差
P:数据类别分布概率
X:我们需要测试的数据
函数返回:
z:数据所属的分类
%}
[~, c] = size(m);
[~, n] = size(X);
z = zeros(n, 1);
t = zeros(c, 1);
for i = 1:n
for j = 1:c
t(j) = P(j) * comp_gauss_dens_val( m(:,j), S(:,:,j), X(:,i) );
end
[~, z(i)] = max(t);
end
end
function [ z ] = comp_gauss_dens_val( m, s, x )
%{
函数功能:
计算高斯分布N(m, s),在某一个特定点的值
参数说明:
m:数据的均值
s:数据的协方差
x:我们需要计算的数据点
函数返回:
z:高斯分布在x出的值
%}
z = ( 1/( (2*pi)^(1/2)*det(s)^0.5 ) ) * exp( -0.5*(x-m)'*inv(s)*(x-m) );
end
本文源代码下载