最小生成树的Kruskal算法

给定无向连通加权图,编程设计求出其一棵最小生成树


/**********************************************************
[要求]:给定无向连通加权图,编程设计求出其一棵最小生成树。


**********************************************************/


#include


using namespace std;


const int SIZE = 40;


int circuitJudge(int, int, int, int);      //判断新加的边与前面的边是否构成回路


int main()
{
int i,j,n;
int a = 1;
int b;
int side[SIZE][SIZE] = { 0 };        //定义存放顶点的side(边)函数,其中二维数组
                                    //的两个下标表示边的两个顶点,二维数组的值表示这条边的权




cout<<"输入无向连通加权图的结点数:";
cin>>n;


cout<<"若权值为0,即代表不存在这条边"<for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
{
cout<cout<<"边["<cin>>side[i][j];
}


cout<<"最小生成数的编号\t起点\t终点\t权值\n";
while (1)
{
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
{
if (i != j)
{
if (side[i][j] == a)
{
side[j][i] = 0;
b = circuitJudge(i+1,j+1,side[i][j],n);    //判断新加的边与前面的边是否构成回路
}
}
}


a++;
}


return 0;
}


int circuitJudge (int a, int b, int c, int n)
{
int i;
static int e = 0;
int d = 0,f = 0;
static int capsheaf[SIZE] = { 0 };    //用来存放图中相互可达的顶点




for (i = 0; i < n; i++)
{
if (a == capsheaf[i])
{
d = 1;
}
}
for (i = 0; i < n; i++)
{
if (b == capsheaf[i])
{
f = 1;
}
}
if (d == 1 && f == 1)
{
return 0;
}
if (d == 1)
{
for (i = 0; i < n; i++)
{
if (capsheaf[i] == 0)
{
capsheaf[i] = b;
cout<<++e<<"\t\t\t"<break;
}
}
}
if (f == 1)
{
for (i = 0; i < n; i++)
{
if (capsheaf[i] == 0)
{
capsheaf[i] = a;
cout<<++e<<"\t\t\t"<break;
}
}
}
if (d == 0 && f == 0)
{
for (i = 0; i < n; i++)
if (capsheaf[i] == 0)
{
capsheaf[i] = a;
capsheaf[i+1] = b;
cout<<++e<<"\t\t\t"<break;
}
}




d = 0;
f = 0;
return 0;
}

你可能感兴趣的:(最小生成树的Kruskal算法)