- Spark编程实验六:Spark机器学习库MLlib编程
Francek Chen
Spark编程基础sparkmllib大数据机器学习算法
目录一、目的与要求二、实验内容三、实验步骤1、数据导入2、进行主成分分析(PCA)3、训练分类模型并预测居民收入4、超参数调优四、结果分析与实验体会一、目的与要求1、通过实验掌握基本的MLLib编程方法;2、掌握用MLLib解决一些常见的数据分析问题,包括数据导入、成分分析和分类和预测等。二、实验内容1.数据导入从文件中导入数据,并转化为DataFrame。2、进行主成分分析(PCA)对6个连续型
- Spark MLlib
Francek Chen
Spark编程基础spark-mlsparkmllib机器学习
目录一、SparkMLlib简介(一)什么是机器学习(二)基于大数据的机器学习(三)Spark机器学习库MLlib二、机器学习流水线(一)机器学习流水线概念(二)流水线工作过程(三)构建一个机器学习流水线三、特征提取和转换(一)特征提取:TF-IDF(二)特征转换:标签和索引的转化四、分类与回归(一)逻辑斯蒂回归分类器(二)决策树分类器一、SparkMLlib简介(一)什么是机器学习机器学习可以看
- 【Spark】pyspark 基于DataFrame使用MLlib包
beautiful_huang
Sparkspark
在这里,我们将基于DataFrame使用MLlib包。另外,根据Spark文档,现在主要的Spark机器学习API是spark.ml包中基于DataFrame的一套模型。1ML包的介绍从顶层上看,ML包主要包含三大抽象类:转换器、预测器和工作流。1.1转换器(Transformer)从Transformer抽象类派生出来的每一个新的Transformer都需要实现一个.transform(…)方法
- 【Spark-ML源码解析】Word2Vec
LotusQ
spark-mlword2vec人工智能
前言在阅读源码之前,需要了解Spark机器学习Pipline的概念。相关阅读:SparkMLlib之Pipeline介绍及其应用这里比较核心的两个概念是:Transformer和Estimator。Transformer包括特征转换和学习后的模型两种情况,用来将一个DataFrame转换成另一个DataFrame;Estimator接收一个DataFrame并输出一个模型(Transformer)
- 2018-11-12Pyspark win环境配置参考
QQsoso
Anaconda中配置Pyspark的Spark开发环境Spark搭建机器学习系统Spark机器学习win+本地Pyspark
- 大数据分析与应用实验任务十二
陈希瑞
数据分析数据挖掘
大数据分析与应用实验任务十二实验目的:通过实验掌握spark机器学习库本地向量、本地矩阵的创建方法;熟悉spark机器学习库特征提取、转换、选择方法;实验任务:一、逐行理解并参考编写运行教材8.3.1、8.3.3节各个例程代码,查看向量或本地矩阵结果请用.toArray()方法。1、本地向量首先安装numpy,否则会报错“ImportError:Nomodulenamed‘numpy’”sudop
- spark mllib和spark ml机器学习基础知识
厨 神
大数据pythonspark
spark机器学习SparkMLib完整基础入门教程-y-z-f-博客园(cnblogs.com)参考spark机器学习简介机械学习是一门人工智能的科学,用于研究人工智能,强调算法,经验,性能开发者任务:spark基础+了解机器学习原理+相关参数含义millib:分类回归聚类协同过滤降维特征化:特则提取转化降维选择公交管道:构建评估调整机器学习管道持久性:保存和加载算法,模型和管道实用工具:线代(
- 人工智能学习路线,文末赠书活动(深度学习Spark机器学习)
程序IT圈
算法决策树人工智能机器学习深度学习
程序IT圈学习编程技术,关注这个公众号足够了现在人工智能,机器学习这么火热,很多人想入门却不知道要从哪里入门,从哪里开始学习,该学习些什么内容,下面是我以前看过的一篇关于机器学习的学习入线文章,可能可以帮助到你入门人工智能领域。另外本次文末机械工业出版社华章分社闫老师提供给本公众号五本技术图书《深度学习Spark机器学习》,免费赠送给大家!第一课:机器学习的数学基础1.机器学习的数学基础a.函数与
- 【Spark机器学习速成宝典】模型篇08保序回归【Isotonic Regression】(Python版)
weixin_30894389
python大数据人工智能
目录保序回归原理保序回归代码(SparkPython)保序回归原理待续...返回目录保序回归代码(SparkPython)代码里数据:https://pan.baidu.com/s/1jHWKG4I密码:acq1#-*-coding=utf-8-*-frompysparkimportSparkConf,SparkContextsc=SparkContext('local')importmathfr
- Spark机器学习之分类与回归
dingcheng998
spark机器学习
本页面介绍了分类和回归的算法。它还包括讨论特定类别的算法的部分,如线性方法,树和集合体。目录分类Classification-----------逻辑回归Logisticregression-------------------二项式逻辑回归Binomiallogisticregression-------------------多项Logistic回归Multinomiallogisticreg
- 机器学习(一)Spark机器学习基础
大模型Maynor
#机器学习机器学习spark人工智能
文章目录1.Spark机器学习基础1.0机器学习和大数据的区别和联系1.1机器学习引入1.2机器学习三次浪潮1.3人工智能领域基础概念区别1.3.1人工智能、机器学习、深度学习关系1.3.2数据分析、数据挖掘基本概念区别1.3.3各技术交叉点后记1.Spark机器学习基础l学习目标掌握机器学习与大数据的区别和联系掌握机器学习概念掌握机器学习如何构建机器学习模型过程1.0机器学习和大数据的区别和联系
- 3.Spark机器学习基础——监督学习
许志辉Albert
Spark机器学习基础——监督学习1.1线性回归(加L1L2正则化)!head-3data/mllib/sample_linear_regression_data.txt1from__future__importprint_functionfrompyspark.ml.regressionimportLinearRegressionfrompyspark.sqlimportSparkSession
- SparkML机器学习
火 玄
sparkspark-ml机器学习人工智能
SparkML机器学习:让机器学会人的学习行为,通过算法和数据来模拟或实现人类的学习行为,使之不断改善自身性能。机器学习的步骤:加载数据特征工程数据筛选:选取适合训练的特征列,例如用户id就不适合,因为它特性太显著.数据转化:将字符串的数据转化数据类型,因为模型训练的数据不能为字符串.将多个特征列转化为一个向量列,因为spark机器学习要求数据输入只能为一个特征列数据缩放:把所有的特征缩放到0~1
- 机器学习基础笔记
硅谷工具人
#spark机器学习机器学习笔记人工智能
文章目录1.机器学习简介1.1机器学习的一般功能1.2机器学习的应用1.3机器学习的方法1.4机器学习的种类1.5机器学习的常用框架2.Spark机器学习2.1MLlib介绍2.2MLlib的数据格式2.2.1本地向量2.2.2标签数据2.3MLlib与ml2.4MLlib的应用场景3.Spark环境搭建4.向量与矩阵4.1向量操作4.2矩阵操作5.基础统计5.1描述性统计5.2相关性度量5.3假
- Spark机器学习实例
V丶Chao
Spark算法python机器学习大数据java
2020/07/09-引言《LearningSpark》过程中只是简单介绍了mllib中的东西,没有一个完整的实践过程,暂时还没有去找有没有专门做这种的书,好像我看《sparkinaction》是有这部分内容,后续在看。本篇文章就利用这个鸢尾花的数据集来简单说明一下spark机器学习的过程,只是简单打下一个轮廓,然后记录使用过程中遇到的问题以及解决方案。在本文中,主要使用新版面向DataFrame
- 【Spark基础编程】 第8章 Spark MLlib
小手の冰凉
【数据科学与大数据技术】sparkspark-ml机器学习
系列文章目录文章目录系列文章目录前言【第8章SparkMLlib】8.1SparkMLlib简介8.1.1什么是机器学习8.1.2基于大数据的机器学习8.1.3Spark机器学习库MLLib8.2机器学习工作流8.2.1机器学习流水线概念8.2.2构建一个机器学习流水线8.3特征抽取、转化和选择8.4分类与回归【第8章总结】前言【第8章SparkMLlib】8.1SparkMLlib简介8.1.1
- 计算机毕业设计之PyTroch+Spark+LSTM+Scrapy图书推荐系统 图书爬虫可视化 图书大数据 图书数据分析
计算机毕业设计大神
开发技术前端:vue.js、echarts、websocket后端API:springboot+mybatis-plus数据库:mysql数据分析:Spark机器学习:PyTroch(基于神经网络的混合CF推荐算法)、协同过滤算法(基于用户、基于物品全部实现)、lstm评论情感分析第三方平台:支付宝沙箱支付、百度AI图片识别、短信接口数据集:Scrapy爬虫框架(Python)创新点Spark大屏
- PySpark机器学习 Machine Learning with PySpark - 2019.Pdf
python测试开发
MachineLearningwithPySpark-2019.Pdfimage.png使用PySpark构建机器学习模型,自然语言处理应用程序和推荐系统,以解决各种业务挑战。本书从Spark的基础知识及其演变开始,然后介绍了传统机器学习算法的整个范围,以及使用PySpark的自然语言处理和推荐系统。使用PySpark进行机器学习向您展示如何构建有监督的机器学习模型,如线性回归,逻辑回归,决策树和
- Spark机器学习实战 (十二) - 推荐系统实战
JavaEdge
0相关源码将结合前述知识进行综合实战,以达到所学即所用。在推荐系统项目中,讲解了推荐系统基本原理以及实现推荐系统的架构思路,有其他相关研发经验基础的同学可以结合以往的经验,实现自己的推荐系统。1推荐系统简介1.1什么是推荐系统1.2推荐系统的作用1.2.1帮助顾客快速定位需求,节省时间1.2.2大幅度提高销售量1.3推荐系统的技术思想1.3.1推荐系统是一种机器学习的工程应用1.3.2推荐系统基于
- 电商推荐系统论文:基于Spark机器学习的电商推荐系统的设计与实现,大数据电商推荐系统毕设论文,Spring MLlib电商推荐系统
诸葛钢铁云
解决方案运维架构大数据运维linuxpython
毕业设计(论文)题目:基于Spark机器学习的电商推荐系统的设计与实现这是我去年本科毕业时做的毕业设计论文,全文三万多字,知网查重对重复率1%,由于本科论文不会被发表到知网上,再加上我已毕业近一年,现在将论文发表到CSDN。如有需要做毕设论文可引用本文对内容,先到先得(内容纯原创,少有重复)。由于作者对水平有限,文章中难免有错误对内容或作者对相关技术有错误对见解,望读者予以谅解,谢谢!接上篇文章:
- spark机器学习-分类回归总结
lixia0417mul2
python机器学习spark机器学习分类
1.spark支持的分类包括以下几个场景:a.二分类,顾名思义就是只分成A和B两类b.多分类分成A,B,C,D等多个分类不支持多标签分类,所谓的多标签分类是指一个样本可以属于多个分类,也就是比如样本X既属于A分类又属于B分类,spark目前不支持分类的算法主要有逻辑回归分类算法,决策树,随即森林等,不管是哪种算法,不同点主要在于支持的分类数量和样本数量的限制不同,评价分类算法的好坏的标志主要是看准
- Spark机器学习工具链-MLflow简介
weixin_34353714
2019独角兽企业重金招聘Python工程师标准>>>Spark机器学习工具链-MLflow简介本文翻译自https://github.com/openthings/mlflow本文地址https://my.oschina.net/u/2306127/blog/1825638,byopenthings,2018.06.07.参考:mlflow项目由Databricks创建。官方主页https://
- Apache Spark机器学习教程
danpu0978
算法大数据python机器学习深度学习
编者注:不要错过有关如何使用ApacheSpark创建数据管道应用程序的新的免费按需培训课程-在此处了解更多信息。决策树广泛用于分类和回归的机器学习任务。在此博客文章中,我将帮助您开始使用ApacheSpark的MLlib机器学习决策树进行分类。机器学习算法概述通常,机器学习可以分为两类算法:有监督算法和无监督算法。监督算法使用标记的数据,其中输入和输出都提供给算法。无监督算法没有预先的输出。这些
- 使用Apache Spark机器学习逻辑回归预测乳腺癌
danpu0978
算法大数据python机器学习人工智能
在此博客文章中,我将帮助您开始使用ApacheSpark的spark.mlLogistic回归来预测癌症恶性程度。Spark的spark.ml库目标是在DataFrames之上提供一组API,以帮助用户创建和调整机器学习工作流程或管道。将spark.ml与DataFrames一起使用可通过智能优化提高性能。分类分类是一类有监督的机器学习算法,该算法基于已知项目的标记示例(例如,已知为恶性的观察结果
- logistic回归预测_使用Apache Spark机器学习Logistic回归预测乳腺癌
danpu0978
算法大数据python机器学习人工智能
logistic回归预测在此博客文章中,我将帮助您开始使用ApacheSpark的spark.mlLogistic回归来预测癌症恶性程度。Spark的spark.ml库目标是在DataFrames之上提供一组API,以帮助用户创建和调整机器学习工作流程或管道。将spark.ml与DataFrames一起使用可通过智能优化提高性能。分类分类是一类有监督的机器学习算法,该算法基于已知项目的标记示例(例
- Spark机器学习解析
Legosnow
机器学习spark人工智能
源码加数据集:文件源码Gitee好像只收10M一下的文件类型,所以数据集就只能以链接的形式自己下了KMeans和决策树KDD99数据集,推荐使用10%的数据集:http://kdd.ics.uci.edu/databases/kddcup99/ALS电影推荐的Movielens数据集,推荐使用1m大小:https://files.grouplens.org/datasets/movielens/逻
- Apache Spark 机器学习 管道 3
uesowys
人工智能技术与架构spark人工智能
ApacheSpark的机器学习管道提供一个统一的、高级的APIs集合,该APIs集合是以数据框架(Datagrams)为基础,帮助开发人员创建或者优化一个用于实际环境的机器学习的管道。管道(Pipeline)的基本概念Spark机器学习类库MLlib提供丰富的用于机器学习的算法,使得机器学习更加容易地在一个管道、工作流程中综合多种不同的算法,以提供更加强大的机器学习能力,管道的基本概念如下所示:
- Python Spark 机器学习与Hadoop 大数据(1)学习笔记一
停止的闹钟
PythonSparkHadoop机器学习大数据大数据Spark机器学习Hadoop学习笔记
PythonSpark机器学习与Hadoop大数据1.1机器学习机器学习框架机器学习(MachineLearning):通过算法,和历史数据进行训练,产生得出模型。当有未知相匹配的数据时,我们可以通过模型进行一定程度上的预测。训练数据(监督学习)分为:Feature(数据特征)Label(数据标签,预测目标)机器学习分类:监督学习:有Feature,有Labul,无监督学习:有Feature,无L
- 笔记:python spark机器学习与hadoop大数据
长度735
大数据pythonspark
目录1.1机器学习的介绍机器学习架构1.2Spark的介绍1.3Spark数据处理RDD、DataFrame、SparkSQl1.4使用python开发spark机器学习与大数据应用1.5pythonspark机器学习1.6大数据定义JAVA-JDK在Linux的下载和安装1.1机器学习的介绍机器学习技术不断进步,应用相当广泛,例如推荐引擎、定向广告、需求预测、垃圾邮件过滤、医学诊断、自然语言处理
- 推荐系统-基于模型协同过滤理论基础与业务实践
深漠大侠
智能推荐智能推荐
推荐系统-基于模型协同过滤理论基础与业务实践1.SparkMllib库框架详解Spark机器学习库五个组件MLAlgratham算法Pipelines管道FeatureszationPersistenceUtilitieslSparkml和Sparkmllibml基于DatafrmaeAPImllib基于rdd的API2.SparkMllib基本数据类型localvector本地向量创建方式上de
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen