- WebMagic:强大的Java爬虫框架解析与实战
Aaron_945
Javajava爬虫开发语言
文章目录引言官网链接WebMagic原理概述基础使用1.添加依赖2.编写PageProcessor高级使用1.自定义Pipeline2.分布式抓取优点结论引言在大数据时代,网络爬虫作为数据收集的重要工具,扮演着不可或缺的角色。Java作为一门广泛使用的编程语言,在爬虫开发领域也有其独特的优势。WebMagic是一个开源的Java爬虫框架,它提供了简单灵活的API,支持多线程、分布式抓取,以及丰富的
- 如何在电商平台上使用API接口数据优化商品价格
weixin_43841111
api数据挖掘人工智能pythonjava大数据前端爬虫
利用API接口数据来优化电商商品价格是一个涉及数据收集、分析、策略制定以及实时调整价格的过程。这不仅能提高市场竞争力,还能通过精准定价最大化利润。以下是一些关键步骤和策略,用于通过API接口数据优化电商商品价格:1.数据收集竞争对手价格监控:使用API接口(如Scrapy、BeautifulSoup等工具结合Python进行网页数据抓取,或使用专门的API服务如PriceIntelligence、
- 大模型训练数据库Common Crawl
WindyChanChan
数据集语言模型数据库
CommonCrawl介绍CommonCrawl是一个非营利组织,致力于通过大规模分布式爬虫系统定期抓取整个Web并将其存储在一个可公开访问的数据库中。CommonCrawl的数据收集和处理过程包括使用Python开源爬虫工具收集全球范围内的网站数据,并将其上传到CommonCrawl基金会的数据仓库中。该项目从2008年开始,至今已经积累了大量的原始网页数据、元数据和文本提取数据。这些数据
- 网站推广爬虫
Bearjumpingcandy
爬虫
网站推广爬虫是一种用于升网站曝光度和推广效果的工具。它通过自动化地访问和收集网站信息,从而实现对目标网站的广告、关键词、排名等数据进行分析和优化。以下是网站推广爬虫的一些介绍:数据收集:网站推广爬虫可以自动访问目标网站,并收集相关的数据,如网站流量、关键词排名、竞争对手信息等。这些数据可以帮助网站推广人员了解网站的现状和竞争环境,从而制定相应的推广策略。关键词优化:通过分析搜索引擎的关键词排名情况
- Cut, Paste and Learn方法解读
wangxinwei2000
深度学习人工智能
Abstract问题背景:标注数据的缺乏:在实例检测任务中,部署物体检测模型的一个主要障碍是缺乏大量标注数据。例如,在一个特定的厨房环境中找到包含实例的大型标注数据集是不太可能的。每当面对新的环境和新的物体实例时,都需要进行昂贵的数据收集和标注工作。研究贡献:解决方法:本文提出了一种简单的方法,可以以最小的努力生成大量标注的实例数据集。关键洞察:研究者的关键洞察是,仅仅确保“局部真实感”(patc
- 改变就是不断犯错不断更正
Belle0
「叶子姑娘自律挑战100天Day20」早起今天成功早起。阅读《微习惯》,第七章,全文完。感到强烈抵触时,后退并缩小目标。这是今天对这一章感触比较大的一句话。今天给自己定的任务是这两天把论文的初稿写完,最好一天就能够写完,结果,我只弄了一点数据收集还对写论文越来越恐惧。原来我在赤裸裸地犯这个错误,不想写论文还一口气逼自己写完,结果更恐惧了。一旦恐惧的我就会不自觉转换注意力,结果也浪费了时间。现在,总
- fluentd 简介,日志收集并导入BigQuery
nvd11
CloudspringEtlspringboot
日志收集的工具有很多种例如Splunk,很多大公司都在使用,但是个人使用的话并不合适,主要是需要license的…钱是1个大问题另1个常见开源的解决方案是ELK,但是搭建和学习成本高,如果只是为了日志收集并不值。对于k8s方案,还有1个开源选择,就是fluentd,本文的主题。Fluentd的简介Fluentd是一个开源的数据收集器,旨在实现日志数据的统一收集、处理和转发。它支持多种数据源和数据格
- 智能农业设备软件工程师如何集成和管理农业物联网(IoT)平台
openwin_top
智能农业设备软件工程师物联网python开发语言深度学习大数据智能农业
microPythonPython最小内核源码解析NI-motion运动控制c语言示例代码解析python编程示例系列python编程示例系列二python的Web神器Streamlit如何应聘高薪职位集成和管理农业物联网(IoT)平台涉及多个步骤,包括设备连接、数据收集、数据传输、数据存储、数据分析和展示。以下是详细分析和示例代码展示。1.设备连接和数据收集首先,智能农业设备需要能够与传感器和执
- 实现数据卓越:生成式人工智能如何彻底改变数据集成
优维科技EasyOps
人工智能
在当今的数字时代,数据已成为从商业和医疗保健到教育和政府等各个领域决策的基石。收集、分析数据并从中获取见解的能力改变了组织的运营方式,为创新、效率和增长提供了前所未有的机会。什么是数据驱动方法?数据驱动方法是一种依靠数据分析和解释来指导决策和战略制定的方法论。这种方法涵盖了一系列技术,包括数据收集、存储、分析、可视化和解释,所有这些都旨在利用数据的力量来推动组织的成功。主要原则包括:数据收集——从
- NO.470 是否应该为“人工智能”焦虑
晴晴董淄博日报
今天听“吴晓波频道”,IBM副总裁周忆给大家分享了人工智能时代的几个案例:1/一个葡萄酒酒庄负责人运用了“物联网技术”,实现了精心灌溉和对每一株植物的互联网关怀,所有的数据都汇集到云端,每天都可以判断每一颗葡萄的情况,最终省了20%的水,增加了25%的产量,并且实现了产品品质的稳定。2/美国一个热门音乐制作人想做一个全美国人都产生共鸣的音乐,然后IBM公司为他们提供了三个数据。第一,大数据收集出了
- ELK架构介绍
星河漫漫l
elkelasticsearch运维服务器
一、ELK简介ELK是由三个开源软件组成的,分别是:Elasticsearch、Logstash和Kibana,这三个软件各自在日志管理和数据分析领域发挥着重要作用。Elasticsearch提供分布式存储和搜索能力;Logstash负责数据收集和处理,而Kibana则提供数据可视化和分析界面。他们共同构成了一个完整的日志管理解决方案,帮助企业高效利用日志数据进行监控、分析和安全审计。1.Elas
- 2023-03-15
困的晕_5c43
1.简述引擎有哪些类型,各类搜索引擎的工作原理是什么。.(1)全文索引型(2)目录索引型(3)元数据索引型(4)垂直索引型(5)互动式索引型搜索引擎的原理可以分为:数据收集、建立索引数据库、索引数据库中搜索和排序。2.新媒体内容搜集工具有哪些?尝试使用这些工具搜集一些当前热点话题第一个:爆文素材采集工具做新媒体运营,每天都需要去搜集大量的爆文视频等素材,这里给大家推荐一个自媒体爆文素材采集工具--
- BAT的大数据战略
数据资本主意
实际上,大数据并不是什么新鲜事物。信息革命带来的除了信息的更高效地生产、流通和消费外,还带来数据的爆炸式增长。“引爆点”到来之后,人们发现原有的零散的对数据的利用造成了巨大的浪费。移动互联网浪潮下,数据产生速度前所未有地加快。人类达成共识开始系统性地对数据进行挖掘。这是大数据的初心。数据积累的同时,数据挖掘需要的计算理论、实时的数据收集和流通通道、数据挖掘过程需要使用的软硬件环境都在成熟。概念、模
- PLC边缘计算网关的选择策略-天拓四方
北京天拓四方
边缘计算物联网iot其他制造
随着工业自动化和物联网技术的快速发展,PLC作为工业自动化的核心设备,其数据采集与处理能力日益受到重视。PLC边缘计算网关作为连接PLC与云端服务的桥梁,不仅承担着数据收集、传输和初步处理的角色,更是实现工业智能化升级的关键。本文将详细介绍PLC边缘计算网关的选择策略,帮助读者在实际应用中做出明智的决策。一、明确需求与场景在选择PLC边缘计算网关之前,首先需要明确自身的需求和应用场景。不同的应用场
- 前端数据埋点
小童不学前端
前端大数据
前端埋点文章目录前言一、什么是埋点二、为什么采用埋点三、前端埋点方案3.1、手动埋点3.2、可视化埋点3.3、无埋点四、埋点方式前言最近看到一个很有意思的前端数据收集:前端数据埋点,下面说说我的观点一、什么是埋点埋点,是数据采集领域,简单来说就是行为数据收集二、为什么采用埋点数据生产->数据收集->数据处理->数据分析->数据驱动/用户反馈->产品优化/迭代通过大数据处理,数据统计,数据挖掘等加工
- 乐凡三防平板高性能为稳定运行保驾护航
livefan
电脑5G网络安全信息与通信科技
随着科技进步的浪潮,三防工业平板电脑在自动化生产、设备监控及数据收集等场景中日益彰显其关键作用。但在特定环境,比如户外探险、紧急救援或电力供应不稳定的场合,维持设备的持续运行成为了一大挑战。因此,开发一款配备可更换电池的三防工业平板显得尤为迫切。以乐凡R08三防平板为例,其采用可替换的聚合物锂离子电池,容量为4000mAh/7.6V,在标准老化测试中,视频播放续航可达5到7小时。这种可更换的电池设
- Mysql备份还原
qBeautifulBoy
mysql数据库
Mysql备份还原1、备份类型热备份、温备份、冷备份(根据服务器状态)热备份:读、写不受影响;温备份:仅可以执行读操作;冷备份:离线备份;读、写操作均中止;物理备份与逻辑备份(从对象来分)物理备份:复制数据文件;逻辑备份:将数据导出至文本文件中;完全备份、增量备份、差异备份(从数据收集来分)完全备份:备份全部数据;增量备份:仅备份上次完全备份或增量备份以后变化的数据;差异备份:仅备份上次完全备份以
- 【Python机器学习】机器学习任务中常见的数据异质问题和模型异构问题是什么?解决策略是什么?
惊鸿若梦一书生
Python机器学习python深度学习开发语言
文章目录数据异质模型异构数据异质数据异质问题(Heterogeneityindata)通常指数据集内部的不一致性,这些不一致性可能来自多种源。在实际应用中,数据异质性可以表现为多种形式,包括:不同来源的数据:数据可能来自不同的数据源,每个源可能采用不同的数据收集方法和标准。例如,社交媒体数据和传统调查数据就可能有很大的差异。不同类型的数据:数据可以是结构化的(例如,数据库中的表格数据),半结构化的
- 深入理解 Prometheus 数据模型与指标监控
勤劳兔码农
prometheus
深入理解Prometheus数据模型与指标监控Prometheus作为一款开源的系统监控和报警工具,其核心在于其独特的数据模型和强大的指标监控能力。为了更好地利用Prometheus,我们需要深入理解其数据模型的构成、数据的收集方式以及如何定义和使用指标监控。本指南将详细探讨Prometheus的数据模型、指标类型、数据收集机制和查询语言(PromQL),帮助你构建对Prometheus的全面理解
- 数据分析有哪些流程?
YesPMP平台官方
数据分析数据挖掘
数据分析的流程主要包括明确目的、数据收集、数据处理、数据分析、数据展示和报告撰写。1.明确目的:这是数据分析的第一步,需要确定分析要解决的具体业务问题,并将业务问题转化为数学问题,以便于后续的数据处理和分析。2.数据收集:基于对业务问题的理解,通过多种方法和渠道收集能支撑业务分析的数据源。数据来源可以是内部的报表和数据库,也可以是外部的网页信息、调查问卷等,重要的是确保数据的统一性和
- 基于人工智能的智能客服系统
嵌入式详谈
人工智能
目录引言项目背景客服系统的现状与挑战AI在客服领域的应用前景系统设计系统架构模块划分关键技术与实现自然语言处理(NLP)对话管理语音识别与合成情感分析数据准备与训练数据收集数据预处理模型训练系统集成与部署前端接口设计后端服务实现系统集成部署方案测试与优化系统测试性能优化用户反馈与迭代应用场景与案例分析电子商务客服银行与金融服务医疗健康咨询常见问题及解决方案常见问题解决方案未来发展与展望结论1.引言
- 基于Prometheus和Grafana的现代服务器监控体系构建
iangyu
服务器
构建一个基于Prometheus和Grafana的现代服务器监控体系,可以帮助你实时监控服务器的性能指标、识别问题并进行预警。以下是一个完整的构建指南,涵盖从安装、配置到实现监控的主要步骤。步骤1:安装PrometheusPrometheus是一个开源的监控系统,专为高效的数据收集和存储设计。下载Prometheuswgethttps://github.com/prometheus/prometh
- 大数据基础之Flume——Flume基础及Flume agent配置以及自定义拦截器
Clozzz
Flume大数据flumehadoop
Flume简介Flume用于将多种来源的日志以流的方式传输至Hadoop或者其他目的地 -一种可靠、可用的高效分布式数据收集服务Flume拥有基于数据流上的简单灵活架构,支持容错、故障转移与恢复由Cloudera2009年捐赠给Apache,现为Apache顶级项目Flume架构Client:客户端,数据产生的地方,如Web服务器Event:事件,指通过Agent传输的单个数据包,如日志数据通常对
- LLM训练、精调与加速:大型语言模型的高效开发与应用策略
知识学习分享交流
人工智能nlpAI语言模型人工智能自然语言处理
创作不易,您的关注、点赞、收藏和转发是我坚持下去的动力!大家有技术交流指导、论文及技术文档写作指导、项目开发合作的需求可以私信联系我LLM(大型语言模型)的训练、精调和加速是当前人工智能研究和应用中的重要话题。下面将详细介绍这些概念及其关键技术。1.训练(Training)训练是指使用大规模数据集对LLM进行初步的学习,使其能够理解和生成自然语言。训练过程通常涉及以下步骤:数据收集与预处理:收集大
- 自主学习——助力终身发展的核心奠基
蒋铭国江西乐平
自主学习——助力终身发展的核心奠基“智慧作业”基于大数据收集、分析,借助各种先进设备,凭借先进技术,动态采集学生作业情况,帮助教师更好地掌握学生学习状况,提供靶向式教学方案,从而提高教学效率,减轻学生学习与教师工作负担。除上述以外,“智慧作业”更为有意义的是逐渐培养学生在家独自观看智慧作业微课的习惯。学生要使用好“智慧作业”,首先是认真完成当天的相关纸质作业,然后在规定的时间通过电视查看微课确认作
- AI在医学领域:基础模型和视觉-语言模型在计算病理学应用概述
robinfang2019
AI在医学领域人工智能语言模型自然语言处理机器学习神经网络深度学习
近年来,人工智能(AI)基于方法在计算病理学(CPath)领域中的应用迅速增长,这主要得益于数字幻灯片扫描仪的广泛采用。因此,大规模的全幻灯片图像(WholeSlideImages,WSIs)的整理和注释成为可能,确保了训练这些基于AI的模型所需的充足数据。这些基于AI的模型的目标是自动化和加速CPath的诊断和预后过程。CPath面临的挑战:数据收集挑战:这可能包括获取高质量、大规模的病理学数据
- 《数字时代的学与教》第四模块共读心得
屏西小学陈欣艳
在这个模块中,讲述了老师通过反馈得到的数据进行及时的教学决策。在当下信息技术不断发展的大背景下,通过数据收集体现学生的思考和思维层次,通过分析数据在课堂中了解学生的掌握情况,调整学生的教学策略。教师选用何种教学策略不是凭老师的经验,而是大数据统计出学生的学习诉求、学生对教学内容的掌握情况来决定的。新课程要求教师实行教学民主,与学生进行沟通、交流与合作,了解学生个性、学习基础、需要及对教学的意见,才
- 数据分析及应用:如何分析基于绝对中位差的异常值检测问题?
莫叫石榴姐
#SQL进阶实战技巧数字化建设通关指南数据分析数据挖掘sql数据库
目录0场景描述1数据准备2问题分析abs(rn-(cnt+1)/2)<13小结0场景描述数据集中可能存在异常的值。值存在异常有多种原因:(1)可能是数据收集方式有问题,比如记录值的仪表存在误差;(2)可能是数据输入错误导致的;(3)还可能是因为数据生成时环境出现异常,这意味着数据点是正确的,但应谨慎根据数据得出任何结论。鉴于此,我们想检测出异常数据。一种检测异常数据的常用方法是,计算数据的标准偏差
- 大模型是如何炼成的:揭秘深度学习训练的秘密与优化技巧
AI大模型_学习君
深度学习人工智能大模型训练ai大模型LLM大语言模型大模型应用
引言:近年来,人工智能领域的突破性进展与大模型的崛起密不可分。从GPT-3到BERT,这些大型预训练模型在各种任务上展现出了惊人的能力。那么,这些大模型是如何训练出来的呢?本文将通过具体案例,带你走进深度学习训练的世界,一探究竟,并分享一些大模型训练过程中的优化技巧。一、数据收集与预处理数据收集:大模型的训练需要海量的数据。例如,GPT-3的训练数据包含了数十亿网页文本,而BERT则使用了维基百科
- Python大数据学习day01——大数据开发概论
笨小孩124
python学习总结大数据学习python
目录大数据概念大数据特点大数据应用场景大数据分析业务步骤大数据职业规划大数据学习路线1.大数据解决问题海量数据存储——海量数据运算——海量数据迁移2.大数据特点(大、多、值、快、信)数据体量大种类和来源多源化实现低价值密度速度快数据的质量准确可信3.大数据应用4.大数据分析步骤明确分析目的思路——数据收集——数据处理(ETL)——数据分析——数据展现——撰写报告5.大数据职业规划6.大数据学习路线
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement