首先来定义一个DataFrame
import pandas as pd
datas = [
{'name': '王小一', 'hight': 171, 'weight': 100},
{'name': '李小二', 'hight': 163, 'weight': 200},
{'name': '张小三', 'hight': 152, 'weight': 67},
{'name': '郭小四', 'hight': 148, 'weight': 77},
{'name': '钱小五', 'hight': 189, 'weight': 87},
{'name': '孙小六', 'hight': 155, 'weight': 82},
{'name': '周小七', 'hight': 169, 'weight': 74},
{'name': '吴小八', 'hight': 170, 'weight': 68},
{'name': '郑小九', 'hight': 173, 'weight': 65},
{'name': '冯老十', 'hight': 175, 'weight': 64}
]
df = pd.DataFrame(datas)
运行效果图
现在想要筛选hight字段大于160的所有数据
代码可以这样写:
df[160 < df['hight']]
运行效果图
现在想筛选所有 160 < hight < 170的数据
如果使用Python的链式比对,就会导致报错:
此时,代码需要改写为很难看的一种样式:
df[(160 < df['hight']) & (df['hight'] < 170)]
运行效果图
这样写虽然能够解决问题,但是代码可读性不好。
为了提高可读性,可以使用pandas自带的.query方法。
当我们要查询hight > 160的数据时,可以这样写:
df.query('hight>160')
运行效果图
当我们要查询160 < hight < 170的时候,可以这样写:
df.query('160
运行效果图
甚至还支持多个参数链式查询,例如筛选所有160
df.query('160
运行效果图
作者:kingname
排版:magic
大家好,我是老表
觉得本文不错的话,转发、留言、点赞,是对我最大的支持。
每日留言
说说你读完本文感受?
或者一句激励自己的话?
(字数不少于15字)
怎么加入刻意学习队伍
点我,看文末彩蛋
留言有啥福利
点我就知道了
想进学习交流群
加微信:jjxksa888
备注:简说Python
2小时快速掌握Python基础知识要点。
完整Python基础知识要点
Python小知识 | 这些技能你不会?(一)
Python小知识 | 这些技能你不会?(二)
Python小知识 | 这些技能你不会?(三)
Python小知识 | 这些技能你不会?(四)
近期推荐阅读:
【1】整理了我开始分享学习笔记到现在超过250篇优质文章,涵盖数据分析、爬虫、机器学习等方面,别再说不知道该从哪开始,实战哪里找了
【2】【终篇】Pandas中文官方文档:基础用法6(含1-5)
觉得不错就点一下“在看”吧