本文仅为个人娱乐分享,请勿用作其他用途
Chapter 3 The device
1) The Diode
a. built-in potential forward bias reverse bias
b. thermal generation of hole and electron pairs in the depletion region reverse currents are substantially larger than the saturation current I s I_s Is
c. Dynamic Behavior Depletion-Region Capacitance C j C_j Cj
C j = C j 0 1 − V D / ϕ 0 C_j = \frac {C_{j0}} {\sqrt{ 1-V_D/\phi_0}} Cj=1−VD/ϕ0Cj0 V D < 0 V_D<0 VD<0 , ∣ V D ∣ |V_D| ∣VD∣ increases, C j C_j Cj decreases
d. Secondary Effects breakdown voltage avalanche breakdown not destructive
Zener breakdown
{ I d = I s ( e V D / ϕ T − 1 ) ϕ T = K T q \begin{cases} I_d = I_s(e^{V_D/\phi_T}-1) \\ \phi_T = \frac {KT}{q}\end{cases} {Id=Is(eVD/ϕT−1)ϕT=qKT operating temperature ϕ T \phi_T ϕT increases with T T T, I d I_d Id decreases at the same time. I s I_s Is increases with T T T
Increasing the temperature causes the leakage current to increase.
2) The MOSFET Transistor
a. four terminal device gate source drain body NMOS PMOS
strong inversion threshold voltage V T V_T VT
{ V T = V T 0 + γ ( ∣ − 2 ϕ F + V S B ∣ − ∣ − 2 ϕ F ∣ ) ϕ F = − ϕ T I n ( N A n i ) \begin{cases}V_T = V_{T0}+\gamma(\sqrt{|-2\phi_F+V_{SB}|}-\sqrt{|-2\phi_F|}) \\ \phi_F = -\phi_TIn(\frac{N_A}{n_i})\end{cases} {VT=VT0+γ(∣−2ϕF+VSB∣−∣−2ϕF∣)ϕF=−ϕTIn(niNA) γ \gamma γ body-effect coefficient
b. V G S > V T V_{GS}>V_T VGS>VT
x x x along the channel, the voltage is V ( x ) V(x) V(x). gate-to-channel voltage at the point equals V G S − V ( x ) V_{GS}-V(x) VGS−V(x).
Q i ( x ) = − C o x [ V G S − V ( x ) − V T ] Q_i(x) = -C_{ox}[V_{GS}-V(x)-V_T] Qi(x)=−Cox[VGS−V(x)−VT] C o x = ϵ o x t o x C_{ox} = \frac {\epsilon_{ox}} {t_{ox}} Cox=toxϵox
{ I D = k n ’ W L [ ( V G S − V T ) V D S − V D S 2 2 ] k n ′ = μ n C o x \begin{cases}I_D = {k_n}^{’}\frac{W}{L}[(V_{GS}-V_T)V_{DS}-\frac{{V_{DS}}^{2}}{2}] \\ {k_n}^{'} = \mu_nC_{ox} \end{cases} {ID=kn’LW[(VGS−VT)VDS−2VDS2]kn′=μnCox linear region
c. V G S − V x < V T V_{GS}-V_x
I D = k n ’ 2 W L [ ( V G S − V T ) 2 ] I_D = \frac{{k_n}^{’}}{2}\frac{W}{L}[{(V_{GS}-V_T)}^{2}] ID=2kn’LW[(VGS−VT)2]
d. channel-length modulation
increasing V D S V_{DS} VDS causes the depletion region at the drain junction to grow, reducing the length of effective channel.
I D = I D ’ ( 1 + λ V D S ) I_D = {I_D}^{’}(1+\lambda V_{DS}) ID=ID’(1+λVDS) λ \lambda λ channel-length modulation
long-channel transistors
e. velocity saturation
short-channel devices velocity saturation effect saturation velocity υ s a t \upsilon_{sat} υsat – electrical field ϵ c \epsilon_c ϵc
υ n = − μ n ϵ ( x ) \upsilon_n = -\mu_n \epsilon(x) υn=−μnϵ(x) velocity-saturation effects are hence less pronounced in PMOS transistors
the delivered current is smaller than what would be normally expected
I D S A T = υ s a t C o x W ( V G T − V D S A T ) I_{DSAT} = \upsilon_{sat}C_{ox}W(V_{GT}-V_{DSAT}) IDSAT=υsatCoxW(VGT−VDSAT)
effect:
V D S A T < V G T V_{DSAT}
I D S A T I_{DSAT} IDSAT displays a linear dependence with respect with V G S V_{GS} VGS.
f. I D − V D S I_D-V_{DS} ID−VDS curve subthreshold conduction
slope factor S S S
3) Dynamic Behavior
a. MOS Structure Capacitances
gate capacitances C g C_{g} Cg lateral diffusion x d x_d xd overlap capacitances
C G S O = C G D O = C o x x d W = C 0 W C_{GSO}=C_{GDO}=C_{ox}x_{d}W=C_{0}W CGSO=CGDO=CoxxdW=C0W
b. channel capacitances
gate-to-channel C G S C_{GS} CGS into three components C G C S C_{GCS} CGCS、 C G C D C_{GCD} CGCD、 C G C B C_{GCB} CGCB
C G C S = C G C D = W L C o x / 2 C_{GCS}=C_{GCD}=WLC_{ox}/2 CGCS=CGCD=WLCox/2
C G C B = W L C o x C_{GCB} = WLC_{ox} CGCB=WLCox
c. junction capacitances
reverse bias diffusion capacitance
bottom-plate junction side-wall junction C d i f f = C b o t t o m + C s w = C j L S W + C j s w ( 2 L S + W ) C_{diff} = C_{bottom}+C_{sw} = C_{j}L_SW+C_{jsw}(2L_S+W) Cdiff=Cbottom+Csw=CjLSW+Cjsw(2LS+W)
d. source-drain resistance
R S , D = L S , D W R x + R c R_{S,D}=\frac {L_{S,D}}{W}R_x+R_c RS,D=WLS,DRx+Rc use material such as titanium or tungsten
process named silicidation
e. some secondary effects
V T V_T VT becomes a function of L L L, W W W, V D S V_{DS} VDS short-channel V T 0 V_{T0} VT0 decreases with L L L for short-channel devices drain-induced barrier lowering(DIBL)
punch-through
hot-carrier effect ==electrons trapped in the oxide change the threesholds of NMOS devices, while decreasing the V T V_T VT of PMOS transistors
f. Process Variations
I D I_D ID connects with V T V_T VT, k n ’ {k_n}^{’} kn’, W W W, L L L
considering worst-case values
4) Technology scaling
a. factor S S S , U U U
the speed of the circuit increases in a linear fashion, while the power scales down quadratically.
comes with a major power penalty
dimensions and voltages are scaled independently
b. Berkeley FinFET dual-gated transistor
c. vertical transistor three-dimensional artifact