《Digital Integrated Circuits》读后笔记(一)

本文仅为个人娱乐分享,请勿用作其他用途

Chapter 3 The device

1) The Diode

a. built-in potential forward bias reverse bias

b. thermal generation of hole and electron pairs in the depletion region reverse currents are substantially larger than the saturation current I s I_s Is

c. Dynamic Behavior Depletion-Region Capacitance C j C_j Cj

C j = C j 0 1 − V D / ϕ 0 C_j = \frac {C_{j0}} {\sqrt{ 1-V_D/\phi_0}} Cj=1VD/ϕ0 Cj0 V D < 0 V_D<0 VD<0 , ∣ V D ∣ |V_D| VD increases, C j C_j Cj decreases

d. Secondary Effects breakdown voltage avalanche breakdown not destructive

Zener breakdown

{ I d = I s ( e V D / ϕ T − 1 ) ϕ T = K T q \begin{cases} I_d = I_s(e^{V_D/\phi_T}-1) \\ \phi_T = \frac {KT}{q}\end{cases} {Id=Is(eVD/ϕT1)ϕT=qKT operating temperature ϕ T \phi_T ϕT increases with T T T, I d I_d Id decreases at the same time. I s I_s Is increases with T T T

Increasing the temperature causes the leakage current to increase.

2) The MOSFET Transistor

a. four terminal device gate source drain body NMOS PMOS

strong inversion threshold voltage V T V_T VT

{ V T = V T 0 + γ ( ∣ − 2 ϕ F + V S B ∣ − ∣ − 2 ϕ F ∣ ) ϕ F = − ϕ T I n ( N A n i ) \begin{cases}V_T = V_{T0}+\gamma(\sqrt{|-2\phi_F+V_{SB}|}-\sqrt{|-2\phi_F|}) \\ \phi_F = -\phi_TIn(\frac{N_A}{n_i})\end{cases} {VT=VT0+γ(2ϕF+VSB 2ϕF )ϕF=ϕTIn(niNA) γ \gamma γ body-effect coefficient

b. V G S > V T V_{GS}>V_T VGS>VT

x x x along the channel, the voltage is V ( x ) V(x) V(x). gate-to-channel voltage at the point equals V G S − V ( x ) V_{GS}-V(x) VGSV(x).

Q i ( x ) = − C o x [ V G S − V ( x ) − V T ] Q_i(x) = -C_{ox}[V_{GS}-V(x)-V_T] Qi(x)=Cox[VGSV(x)VT] C o x = ϵ o x t o x C_{ox} = \frac {\epsilon_{ox}} {t_{ox}} Cox=toxϵox

{ I D = k n ’ W L [ ( V G S − V T ) V D S − V D S 2 2 ] k n ′ = μ n C o x \begin{cases}I_D = {k_n}^{’}\frac{W}{L}[(V_{GS}-V_T)V_{DS}-\frac{{V_{DS}}^{2}}{2}] \\ {k_n}^{'} = \mu_nC_{ox} \end{cases} {ID=knLW[(VGSVT)VDS2VDS2]kn=μnCox linear region

c. V G S − V x < V T V_{GS}-V_xVGSVx<VT pinched off

I D = k n ’ 2 W L [ ( V G S − V T ) 2 ] I_D = \frac{{k_n}^{’}}{2}\frac{W}{L}[{(V_{GS}-V_T)}^{2}] ID=2knLW[(VGSVT)2]

d. channel-length modulation

increasing V D S V_{DS} VDS causes the depletion region at the drain junction to grow, reducing the length of effective channel.

I D = I D ’ ( 1 + λ V D S ) I_D = {I_D}^{’}(1+\lambda V_{DS}) ID=ID(1+λVDS) λ \lambda λ channel-length modulation

long-channel transistors

e. velocity saturation

short-channel devices velocity saturation effect saturation velocity υ s a t \upsilon_{sat} υsat – electrical field ϵ c \epsilon_c ϵc

υ n = − μ n ϵ ( x ) \upsilon_n = -\mu_n \epsilon(x) υn=μnϵ(x) velocity-saturation effects are hence less pronounced in PMOS transistors

the delivered current is smaller than what would be normally expected

I D S A T = υ s a t C o x W ( V G T − V D S A T ) I_{DSAT} = \upsilon_{sat}C_{ox}W(V_{GT}-V_{DSAT}) IDSAT=υsatCoxW(VGTVDSAT)

effect:

  • V D S A T < V G T V_{DSAT}VDSAT<VGT

  • I D S A T I_{DSAT} IDSAT displays a linear dependence with respect with V G S V_{GS} VGS.

f. I D − V D S I_D-V_{DS} IDVDS curve subthreshold conduction

slope factor S S S

3) Dynamic Behavior

a. MOS Structure Capacitances

gate capacitances C g C_{g} Cg lateral diffusion x d x_d xd overlap capacitances

C G S O = C G D O = C o x x d W = C 0 W C_{GSO}=C_{GDO}=C_{ox}x_{d}W=C_{0}W CGSO=CGDO=CoxxdW=C0W

b. channel capacitances

gate-to-channel C G S C_{GS} CGS into three components C G C S C_{GCS} CGCS C G C D C_{GCD} CGCD C G C B C_{GCB} CGCB

C G C S = C G C D = W L C o x / 2 C_{GCS}=C_{GCD}=WLC_{ox}/2 CGCS=CGCD=WLCox/2

C G C B = W L C o x C_{GCB} = WLC_{ox} CGCB=WLCox

c. junction capacitances

reverse bias diffusion capacitance

bottom-plate junction side-wall junction C d i f f = C b o t t o m + C s w = C j L S W + C j s w ( 2 L S + W ) C_{diff} = C_{bottom}+C_{sw} = C_{j}L_SW+C_{jsw}(2L_S+W) Cdiff=Cbottom+Csw=CjLSW+Cjsw(2LS+W)

d. source-drain resistance

R S , D = L S , D W R x + R c R_{S,D}=\frac {L_{S,D}}{W}R_x+R_c RS,D=WLS,DRx+Rc use material such as titanium or tungsten

process named silicidation

e. some secondary effects

  • V T V_T VT becomes a function of L L L, W W W, V D S V_{DS} VDS short-channel V T 0 V_{T0} VT0 decreases with L L L for short-channel devices drain-induced barrier lowering(DIBL)

    punch-through

  • hot-carrier effect ==electrons trapped in the oxide change the threesholds of NMOS devices, while decreasing the V T V_T VT of PMOS transistors

f. Process Variations

I D I_D ID connects with V T V_T VT, k n ’ {k_n}^{’} kn, W W W, L L L

considering worst-case values

4) Technology scaling

a. factor S S S , U U U

  • full scaling: voltages and dimensions are scaled by the same factor S S S

the speed of the circuit increases in a linear fashion, while the power scales down quadratically.

  • fixed-voltage scaling

comes with a major power penalty

  • general scaling

dimensions and voltages are scaled independently

b. Berkeley FinFET dual-gated transistor

c. vertical transistor three-dimensional artifact

你可能感兴趣的:(数字电路)