- Python算法L5:贪心算法
小熊同学哦
Python算法算法python贪心算法
Python贪心算法简介目录Python贪心算法简介贪心算法的基本步骤贪心算法的适用场景经典贪心算法问题1.**零钱兑换问题**2.**区间调度问题**3.**背包问题**贪心算法的优缺点优点:缺点:结语贪心算法(GreedyAlgorithm)是一种在每一步选择中都采取当前最优或最优解的算法。它的核心思想是,在保证每一步局部最优的情况下,希望通过贪心选择达到全局最优解。虽然贪心算法并不总能得到全
- 2024年CSP-J初赛备考建议
再临TSC
c++杂谈c++学习
针对2024年CSP-J(ComputerSciencePrinciplesJunior,即计算机科学原理初级认证)的备考,首先,先来看考试可能考的东西:动规(包括背包问题),主要在程序阅读还有程序补全题考,这方面,了解动规的原理就可以轻松拿分高精,也是在阅读和补全题,了解原理即可,Z2~Z3应该就学高精了深搜广搜,基础题可能会给你一个片段,然后问你这是什么算法,或者,问你下列选项中哪个正确,给你
- 数据结构与算法 - 贪心算法
临界点oc
数据结构与算法贪心算法算法
一、贪心例子贪心算法或贪婪算法的核心思想是:1.将寻找最优解的问题分为若干个步骤2.每一步骤都采用贪心原则,选取当前最优解3.因为没有考虑所有可能,局部最优的堆叠不一定让最终解最优贪心算法是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法。这种算法通常用于求解优化问题,如最小生成树、背包问题等。贪心算法的应用:1.背包问题:给定一组物品和一个背包
- 数学建模笔记——动态规划
liangbm3
数学建模笔记数学建模笔记动态规划python背包问题算法优化问题
数学建模笔记——动态规划动态规划1.模型原理2.典型例题2.1例1凑硬币2.2例2背包问题3.python代码实现3.1例13.2例2动态规划1.模型原理动态规划是运筹学的一个分支,通常用来解决多阶段决策过程最优化问题。动态规划的基本想法就是将原问题转换为一系列相互联系的子问题,然后通过逐层地推来求得最后的解。目前,动态规划常常出现在各类计算机算法竞赛或者程序员笔试面试中,在数学建模中出现的相对较
- 力扣494-目标和(Java详细题解)
Calebcode.
重生之我在lc刷算法leetcodejava算法
题目链接:494.目标和-力扣(LeetCode)前情提要:因为本人最近都来刷dp类的题目所以该题就默认用dp方法来做。最近刚学完01背包,所以现在的题解都是以01背包问题为基础再来写的。如果大家不懂01背包的话,建议可以去学一学,01背包问题可以说是背包问题的基础。如果大家感兴趣,我后期可以出一篇专门讲解01背包问题。dp五部曲。1.确定dp数组和i下标的含义。2.确定递推公式。3.dp初始化。
- HDU - 1398 完全背包问题求方案数
tran_sient
算法以及模板完全背包求方案数
题目描述:ProblemDescriptionPeopleinSilverlandusesquarecoins.Notonlytheyhavesquareshapesbutalsotheirvaluesaresquarenumbers.Coinswithvaluesofallsquarenumbersupto289(=17^2),i.e.,1-creditcoins,4-creditcoins,9
- AcWing 532. 货币系统 多重背包问题的变形
罚时大师月色
算法提高课
AcWing532.货币系统在网友的国度中共有 n 种不同面额的货币,第 i 种货币的面额为 a[i],你可以假设每一种货币都有无穷多张。为了方便,我们把货币种数为 n、面额数组为 a[1…n] 的货币系统记作 (n,a)。在一个完善的货币系统中,每一个非负整数的金额 x 都应该可以被表示出,即对每一个非负整数 x,都存在 n 个非负整数 t[i] 满足 a[i]×t[i] 的和为 x。然而,在网
- 动态规划算法之背包问题详细解读(附带Java代码解读)
南城花随雪。
算法分析算法动态规划
动态规划中的背包问题(KnapsackProblem)是经典问题之一,通常用来解决选择一组物品放入背包使得背包的价值最大化的问题。根据问题条件的不同,背包问题有很多种变体,如0-1背包问题、完全背包问题、多重背包问题等。这里,我们详细介绍最经典的0-1背包问题,并提供代码的详细解读。1.0-1背包问题简介在0-1背包问题中,有一个容量为C的背包和n件物品。每件物品有两个属性:重量w[i]和价值v[
- c++使用动态规划求解01背包问题
苓一在学习
算法c++
-什么是01背包问题?在01背包问题中,因为每种物品只有一个,对于每个物品只需要考虑选与不选两种情况。如果不选择将其放入背包中,则不需要处理。如果选择将其放入背包中,由于不清楚之前放入的物品占据了多大的空间,需要枚举将这个物品放入背包后可能占据背包空间的所有情况。需要注意的是:01背包问题不能使用贪心思想,因为每次选取最大的并不能保证背包刚好装满,遇到01背包问题先找到题目中的“背包”和“物品”,
- 01背包问题C++
znyee07
c++c++蓝桥杯c语言动态规划
1.问题简述:有N件物品和一个容量是V的背包,每件物品只能使用一次。第i件物品的体积是vi,价值是wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大2.朴素解法及优化:定义状态f[i][j]表示:前i件物品当体积不超过j时的所有选法的集合状态方程f[i][j]的状态转移关键在于第i件物品选或不选;不选第i件时f[i][j]=f[i-1][j];选第i件时f[i][j]=
- 个人关于背包问题的总结(一)
Saber—Lily
背包问题总结笔记
一.前言背包问题是动态规划的一个巨大的分支,常见的背包问题都有相对的模版,个人认为如果只是会背板子是下下之策,从长远的角度来看是不可取的,因此我想在这里分享一些个人对于背包问题的理解(会有借鉴其他大牛地方,逃~)同时如果我有一些不正的确的地方也欢迎大家和我交流。希望能加深大家对背包问题的理解,二.01背包问题理解以及常见的例题1.01背包的分析以及理解动态规划(dp)问题的一般求解步骤概括如下1.
- 动态规划:一和零题目分析
小希与阿树
动态规划算法
法一:三维dp数组(容易理解,但空间复杂度较高)本题的含义是从strs数组中选取子集,使其子集的个数最大,限制条件是所有子集中0和1的个数总和有要求,因此可以转化为01背包问题,从字符串数组中任取子集(每个元素只能取一次),限制条件是所取子集数组的0和1的个数总和。确定dp数组及其下标含义:dp[i][j][k]表示从下标0~i的字符串数组中任取字符串放入背包含有j个0和k个1的字符串个数,其中d
- C++---背包模型---潜水员(每日一道算法2023.3.13)
SRestia
算法算法c++动态规划
注意事项:本题是"动态规划—01背包"和"背包模型—二维费用的背包问题"的扩展题,优化思路不多赘述,dp思路会稍有不同,下面详细讲解。题目:潜水员为了潜水要使用特殊的装备。他有一个带2种气体的气缸:一个为氧气,一个为氮气。让潜水员下潜的深度需要各种数量的氧和氮。潜水员有一定数量的气缸。每个气缸都有重量和气体容量。潜水员为了完成他的工作需要特定数量的氧和氮。他完成工作所需气缸的总重的最低限度的是多少
- 常见的算法底层思想
qinbaby
算法
1.分治法思想:将一个大问题分解成若干个规模较小的相同问题,递归求解子问题,最后合并子问题的解得到原问题的解。例子:快速排序、归并排序、二分查找。2.动态规划思想:将原问题分解为若干个相互重叠的子问题,通过解决子问题来构建原问题的解,并存储子问题的解以避免重复计算。例子:斐波那契数列、最长公共子序列、背包问题。3.贪心算法思想:在每一步选择中都采取在当前状态下最好或最优的选择,从而希望导致结果是全
- 416.分割等和子集
纯白色的少云
动态规划
416.分割等和子集给你一个只包含正整数的非空数组nums。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。示例1:输入:nums=[1,5,11,5]输出:true解释:数组可以分割成[1,5,5]和[11]。示例2:输入:nums=[1,2,3,5]输出:false解释:数组不能分割成两个元素和相等的子集。思路回溯是一种解法,但是会超时。另一种将其转换成背包问题,nums数
- 使用Python计算平面多边形间最短距离,数据需要从exce
Buoluochuixue
java
使用Python计算平面多边形间最短距离,数据需要从exce使用Python计算平面多边形间最短距离,数据需要从excel表格中导入,*多边形种类包括(圆形、矩形、六边形、五边形、跑道形/胶囊形),*Python代码题解|#[SCOI2009]粉刷匠#//分组背包问题,首先考虑一个木板的情况://对于一个木板而言:dp[i][j],i表示当前是第i次粉刷,粉刷第j块格子的情况。//那么得到状态转移
- 0-1背包问题
能力越小责任越小YA
算法算法动态规划c++
问题描述:N种物品,每种物品只有1个,每个物品有自己的重量和价值,有一个最多只能放重量为M的背包。问:这个背包最多能装价值为多少的物品?二维dp数组解法:dp数组的含义:dp[i][j]表示下标为0-i(物品的编号)之间的物品任取,放进容量为j的背包里的最大价值;递推公式:dp[i][j]=max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i]);初始化:dp[i
- 完全背包&多重背包问题(动态规划)
能力越小责任越小YA
算法算法动态规划c++
完全背包问题:每个物品使用次数没有限制,与0-1背包的不同之处在于遍历背包的顺序是正序。#includeusingnamespacestd;intmain(){intn,v;cin>>n>>v;vectorweight(n),values(n),dp(v+1,0);//dp[j]:容量为j的背包的最大价值for(inti=0;i>weight[i]>>values[i];}for(inti=0;i
- acwing完全背包问题
CodeWizard~
算法深度优先图论c++数据结构
acwing完全背包问题题目:有N种物品和一个容量是V的背包,每种物品都有无限件可用。第i种物品的体积是vi,价值是wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。接下来有N行,每行两个整数vi,wi,用空格隔开,分别表示第i种物品的体积和价值。输出格式输出一个整数,表示最大价值。
- [题解-华为机试] 购物单
初梦语雪
算法题#动态规划华为算法
购物单解题思路较为抽象的01背包问题,#include#includeusingnamespacestd;intmain(){intN,m;cin>>N>>m;intvalue,priority,q;inti,j;vector>data(m+1,vector(6,0));for(i=1;i>value>>priority>>q;//是主件if(q==0){data[i][0]=value;data
- 【动态规划】【打卡121天】:背包理论基础
晓风残月一望关河萧索
【算法】
1、背包理论基础有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i]。每件物品只能用一次,求解将哪些物品装入背包里物品价值最大。其实这是标准的背包问题。每一件物品有2种状态,取物品放入背包中,不取该物品放入背包中。所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是O(2^n),这里的n表示物品数量。2、算法分析①确定dp数组以及下标的含义对
- Leetcode Day11背包问题
比起村村长
leetcodeleetcode算法职场和发展
背包问题模版@cachedefdfs(i,c):#i指我们考虑几个物品,c指当前容量#没有物品可以考虑了,直接返回0ific:returndfs(i-1,c)else:returnmax(dfs(i-1,c),dfs(i-1,c-weight[i])+value[i]494给你一个非负整数数组nums和一个整数target。向数组中的每个整数前添加‘+’或‘-’,然后串联起所有整数,可以构造一个表
- 算法分析与设计——实验5:分支限界法
阮阮的阮阮
算法分析与设计实验报告算法分支限界单源最短路径问题0-1背包问题N皇后问题c++java
实验五分支限界法一、实验目的1、理解分支限界算法的基本原理;2、理解分支限界算法与回溯算法的区别;3、能够使用分支限界算法边界求解典型问题。二、实验内容及要求实验要求:通过上机实验进行算法实现,保存和打印出程序的运行结果,并结合程序进行分析,上交实验报告和程序文件。实验内容:1、使用分支限界算法解决单源最短路径问题。2、使用分支限界算法解决0-1背包问题。3、在N*N的棋盘上放置彼此不受攻击的N个
- MATLAB智能优化算法-学习笔记(1)——遗传算法求解0-1背包问题【过程+代码】
郭十六弟
算法matlab学习智能优化算法算法思想遗传算法求解0-1背包问题
一、问题描述(1)数学模型(2)模型总结目标函数:最大化背包中的总价值Z。约束条件:确保背包中的物品总重量不超过容量W。决策变量:每个物品是否放入背包,用0或1表示。这个数学模型是一个典型的0-1整数线性规划问题。由于其NP完全性,当问题规模较大时,求解此问题通常需要使用启发式算法(如遗传算法、动态规划、分支定界法等)来找到近似最优解。(3)实例讲解:0-1背包问题模型手动求解过程在0-1背包问题
- 理解背包问题:分类与解题模板
blaizeer
算法分类动态规划深度优先算法数据结构
动态规划——背包问题文章目录理解背包问题:分类与解题模板什么是背包问题?注意:背包问题的分类按选择方式分类:按问题类型分类:综合分类:背包问题解题模板基本解题思路:模板代码:分类解题模板:例题解析背包问题解题模板(实践中记忆)例题总结理解背包问题:分类与解题模板在算法问题中,背包问题是一类经典的动态规划问题,它们的核心思想是选择一组物品,满足某个条件或目标。背包问题不仅限于物理意义上的“背包”和“
- 算法分析之二叉树
小朱小朱绝不服输
算法分析算法数据结构二叉树Java
算法相关数据结构总结:序号数据结构文章1动态规划动态规划之背包问题——01背包动态规划之背包问题——完全背包动态规划之打家劫舍系列问题动态规划之股票买卖系列问题动态规划之子序列问题算法(Java)——动态规划2数组算法分析之数组问题3链表算法分析之链表问题算法(Java)——链表4二叉树算法分析之二叉树算法分析之二叉树遍历算法分析之二叉树常见问题算法(Java)——二叉树5哈希表算法分析之哈希表算
- 贪心算法-分数背包问题
吃小南瓜�
贪心算法算法c++
贪心算法与分数背包问题详解目录贪心算法与分数背包问题详解贪心算法简介分数背包问题问题分析算法步骤流程图代码实现(C++)总结C++学习资源贪心算法简介贪心算法是一种在每一步选择中都采取在当前状态下最好或最优的选择,从而希望导致结果是全局最好或最优的算法策略。它在有最优子结构的问题中尤为有效。分数背包问题与0-1背包问题不同,分数背包问题允许将物品的部分装入背包。这意味着我们可以将一个物品分割成任意
- 0-1 背包问题及其 Java 实现
杰哥的编程世界
java算法java开发语言
0-1背包问题及其Java实现概述0-1背包问题是动态规划领域的经典问题之一。在这个问题中,你给定一组物品,每个物品都有一个重量和一个价值,确定在不超过背包承载能力的前提下,如何选取物品以使得总价值最大化。问题描述假设有n个物品和一个容量为W的背包。第i个物品的重量为weight[i],价值为value[i]。0-1背包问题的目标是选择一些物品放入背包中,以使得背包中物品的总价值最大,且总重量不超
- Java 算法-背包问题 VI(动态规划)
琼珶和予
今天做了一道背包问题的变种问题,这个问题还是用动态规划来做,但是做法上跟原来的背包问题有很大的区别。题意给出一个都是正整数的数组nums,其中没有重复的数。从中找出所有的和为target的组合个数。样例给出nums=[1,2,4],target=4可能的所有组合有:[1,1,1,1][1,1,2][1,2,1][2,1,1][2,2][4]返回61.最简单的方法--回溯法(超时) 看到这种问
- 算法学习6——贪心算法
零 度°
算法学习算法学习贪心算法
什么是贪心算法?贪心算法是一种在每一步选择中都采取当前状态下最优或最有利的选择的算法。其核心思想是通过一系列局部最优选择来达到全局最优解。贪心算法广泛应用于各种优化问题,如最短路径、最小生成树、背包问题等。贪心算法的特点局部最优选择:每一步都做出在当前情况下最优的选择。无后效性:一旦某个状态被确定,就不会再被改变或回溯。逐步构造解决方案:通过一系列的选择逐步构建出最终的解决方案。经典例子及其Pyt
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite