Performanced C++ 经验规则(2):你不知道的构造函数(中)

上一篇你不知道的构造函数(上)主要讲述了,C++构造函数在进入构造函数体之前,你可能不知道的一些细节。这一篇将讲述,进入构造函数体后,又发生了什么。

4、虚表初始化

上一篇曾提到,如果一个类有虚函数,那么虚表的初始化工作,无论构造函数是你定义的还是由编译器产生的,这部分工作都将由编译器隐式“合成”到构造函数中,以表示其良苦用心。上一篇还提到,这部分工作,在“刚”进入构造函数的时候,就开始了,之后,编译器才会理会,你构造函数体的第一行代码。这一点,通过反汇编,我们已经看的非常清楚。

虚表初始化的主要内容是:将虚表指针置于对象的首4字节;用该类的虚函数实际地址替换虚表中该同特征标(同名、同参数)函数的地址,以便在调用的时候实现多态,如果有新的虚函数(派生类中新声明的),则依次添加至虚表的后面位置。

5、构造函数中有虚特性(即多态、即动态绑定、晚绑定)产生吗?

这个问题,看似简单,答案却比较复杂,正确答案是:对于构造函数,构造函数中没有虚特性产生(在C++中答案是NO,但在Java中,答案是YES,非常的奇葩)。

先从基类构造函数说起,为什么要提基类构造函数呢,因为,派生类总是要调用一个基类的构造函数(无论是显式调用还是由编译器隐式地调用默认构造函数,因为这里讨论的是有虚函数的情况,所以一定会有基类构造函数产生并调用),而此时,在基类构造函数中,派生类对象根本没有创建,也就是说,基类根本不知道派生类中产生了override,即多态,故没有虚特性产生。

这一段非常让人疑惑。让我们再看一小段代码,事实胜于雄辩。

#include

using namespace std;


class Base

{

public:

        Base() { foo(); }

        virtual void foo(void) { cout << "Base::foo(void)" << endl; }

        virtual void callFoo(void) { foo(); }

};


class Derived : public Base

{

public:

        Derived() { foo(); }

        void foo(void) { cout << "Derived::foo(void)" << endl; }

};


int main(int argc, char** argv)

{

        Base* pB = new Derived;

        pB->callFoo();

        if(pB)

                delete pB;

        return 0;

}

在Ubuntu 12.04 + gcc 4.6.3输出结果如下:

Base::foo(void)

Derived::foo(void)

Derived::foo(void)

这个结果可以很好的解释上述问题,第一行,由于在Base构造函数中,看不到Derived的存在,所以根本不会产生虚特性;而第二行,虽然输出了Derived::foo(void),但因为在派生类直接调用方法名,调用的就是本类的方法,(当然,也可认为在Derived构造函数中,执行foo()前,虚表已经OK,故产生多态,输出的是派生类的行为)。再看第三行,也产生多态,因为,此时,派生类对象已经构建完成,虚表同样也已经OK,所以产生多态是必然。

这个问题其实是C++比较诟病的陷阱问题之一,但我们只要记住结论:不要在构造函数内调用其它的虚成员函数,否则,当这个类被继承后,在构造函数内调用的这些虚成员函数就没有了虚特性(丧失多态性)。(非虚成员函数本来就没有多态性,不在此讨论范围)

解决此类问题的方法,是使用“工厂模式”,在后续篇幅中笔者会继续提到,这也是《Effective C++》中阐述的精神:尽可能以工厂方法替换公有构造函数。

另外,有兴趣的同学,可以将上述代码稍加修改成Java跑一跑,你会惊喜的发现,三个输出都是Derived::foo(void),也就是说,JVM为你提供了一种未卜先知的超自然能力。

6、构造函数中调用构造函数、析构函数

上面已经提到,不要在构造函数内调用其它成员函数,那么调用一些“特殊”的函数,情况又如何呢?我知道,有同学想到了,在构造函数中调用本类的析构函数,情况如何?如下面的代码

#include

using namespace std;


class A

{

public:

        ~A() { cout << hex << (int)this <<"destructed!" << endl; }

        A() { cout << hex << (int)this << "constructed!" << endl;

                ~A();  }


};


int main(int argc, char** argv)

{

        A a;

        return 0;

}

虽然我对有这种想法的同学有强拖之去精神病院的冲动,但还是本着研究精神,把上述“疯子”代码跑一遍,还特地把析构函数的定义提到构造函数之前以防构造函数不认识它。结论是:构造函数中调用析构函数,编译器拒绝接受~A()是析构函数,从而拒绝这一不讲理行为。此时编译器认为,你是在重载~操作符,并给出没有找到operator ~()声明的错误提示。其实,无论是在构造函数A()里面调用~A()不行,在成员函数里,也是不行的(编译器仍认为你要调用operator ~(),而你并没有声明这个函数)。但是,有个小诡计,却可以编译通过,就是通过this->~A()来调用析构函数,这将导致对象a被析构多次,隐藏着巨大的安全隐患。

总之,在构造函数中调用析构函数,是十分不道德的行为,应严格禁止。

好了,接下来是,构造函数中,调用构造函数,情况又如何呢?

(1)首先,如果构造函数中递归调用本构造函数,产生无限递归调用,很快就栈溢出(栈上分配)或其它crash,应严格禁止;

(2)如果构造函数中,调用另一个构造函数,情况如何?

#include

using namespace std;


class ConAndCon

{

public:

    int _i;

    ConAndCon( int i ) : _i(i){}

    ConAndCon()

    {

        ConAndCon(0);

    }

};


int main(int argc, char** argv)

{

    ConAndCon cac;

    cout << cac._i << endl;

    return 0;

}

上面代码,输出为0吗?

答案是:不一定。输出结果是不确定的。根据C++类非静态成员是没有默认值的规则,可以推定,上述代码里,在无参构造函数中调用另一个构造函数,并没有成功完成对成员的初始化工作,也就是说,这个调用,是不正确的。

那么,由ConAndCon产生的对象哪里去了?如果用gdb跟踪调试或在上述类的构造、析构函数中打印出对象信息就会发现,在构造函数中调用另一个构造函数,会产生一个匿名的临时对象,然后这个对象又被销毁,而调用它的cac对象,仍未得到本意的初始化(设置_i为0)。这也是应严格禁止的。

通常解决此问题的三个方案是:

方案一,我们称为一根筋方案,即,我仍要继续在构造函数中调用另一个构造函数,还要让它正确工作,即“一根筋”,解决思路:不要产生新分配的对象,即在第一个构造函数产生了对象的内存分配之后,仍在此内存上调用另一个构造函数,通过布局new操作符(replacement new)可以做到:

//标准库中replacement new操作符的定义:

//需要#include


inline void *__cdecl operator new(size_t, void *_P)

{

    return (_P);

}


//那么修改ConAndCon()为:


    ConAndCon()

    {

        new (this)ConAndCon(0);

    }

即在第一次分配好的内存上再次分配。

某次在Ubuntu 12.04 + gcc 4.6.3运行结果如下(修改后的代码):

#include

#include

using namespace std;


class ConAndCon

{

public:

    int _i;

    ConAndCon( int i ) : _i(i){cout << hex << (int)this <<"constructed!" << endl;}

    ConAndCon()

    {

        cout << hex << (int)this <<"constructed!" << endl;

        new (this)ConAndCon(0);

    }

        ~ConAndCon() { cout << hex << (int)this <<"destructed!" << endl; }

};


int main(int argc, char** argv)

{

    ConAndCon cac;

    cout << cac._i << endl;

    return 0;

}


//运行结果:

bfd1ae9cconstructed!

bfd1ae9cconstructed!

0

bfd1ae9cdestructed!

可以看到,成功在第一次分配的内存上调用了另一个构造函数,且无需手动为replacement new调用析构函数(此处不同于在申请的buffer上应用replacement new,需要手动调用对象析构函数后,再释放申请的buffer)

方案二,我们称为“AllocAndCall”方案,即构造函数只完成对象的内存分配和调用初始化方法的功能,即把在多个构造函数中都要初始化的部分“提取”出来,通常做为一个private和非虚方法(为什么不能是虚的参见上面第5点),然后在每个构造函数中调用此方法完成初始化。通常,这样的方法取名为init,initialize之类。

class AllocAndCall

{

private:

    void initial(...) {...} //初始化集中这里

public:

    AllocAndCall() { initial(); ...}

    AllocAndCall(int x) { initail(); ...}

};

这个方案和后面要详述的“工厂模式”,在一些思想上类似。

这个方案最大的不足,是在于,initial()初始化方法不是构造函数而不能使用初始化列表,对于非静态const成员的初始化将无能为力。也就是说,如果该类包含非静态的const成员(静态的成员初始化参看上一篇中的第2点),则对这些非静态const成员的初始化,必须要在每个构造函数的初始化列表完成,无法“抽取“到初始化方法中。

方案三,我们称为“C++ 0x“方案,这是C++ 0x中的新特性,叫做“委托构造函数”,通过在构造函数的初始化列表(注意不是构造函数体内)中调用其它构造函数,来得到相应目的。感谢C++ 0x!

class CPerson

{

public:

CPerson() : CPerson(0, "") { NULL; }

CPerson(int nAge) : CPerson(nAge, "") { NULL; }

CPerson(int nAge, const string &strName)

{

  stringstream ss;

  ss << strName << "is " << nAge << "years old.";

  m_strInfo = ss.str();

}


private:

string m_strInfo;

};

其实,对于这样的问题,笔者认为,最好的解决方式,没有在这几种方案中讨论,仍是——使用“工厂模式”,替换公有构造函数。

中篇到此结束,下一篇将会有更多精彩内容——in C++ Constructor!。谢谢大家!喜欢小编分享的文章的小伙伴可以加下小编主页的Q群一起交流哦!

你可能感兴趣的:(Performanced C++ 经验规则(2):你不知道的构造函数(中))