Spark Authorizer
Spark Authorizer provides you with SQL Standard Based Authorization for Apache Spark like SQL Standard Based Hive Authorization. While you are using Spark SQL or Dataset/DataFrame API to load data from tables embedded with Apache Hive metastore, this library provides row/column level fine-grained access controls with Apache Ranger.
Security is one of fundamental features for enterprise adoption. Apache Ranger offers many security plugins for many Hadoop ecosystem components, such as HDFS, Hive, HBase, Solr and Sqoop2. However, Apache Spark is not counted in yet.
When a secured HDFS cluster is used as a data warehouse accessed by various users and groups via different applications wrote by Spark and Hive,
it is very difficult to guarantee data management in a consistent way. Apache Spark users visit data warehouse only with Storage based access controls offered by HDFS. This library shares Ranger Hive plugin with Hive to help Spark talking to Ranger Admin.
Building Spark Authorizer
Spark Authorizer is built using Apache Maven. To build it, run:
git clone https://github.com/yaooqinn/spark-authorizer.git
cd spark-authorizer
# choose a branch of your spark version
git checkout spark-
mvn package
Specifying Spark Authorization for Apache Spark
Branch | Spark Version | Notes |
---|---|---|
master | master | periodically update to catch up |
spark-2.2 | 2.2.1 | - |
spark-2.1 | 2.1.2 | - |
Installing Spark Authorizer to Spark
cp spark-authorizer-
.jar $SPARK_HOME/jars - install ranger-hive-plugin for spark
- configure you
hive-site.xml
and ranger configuration file, you may find an sample in[./conf]
Interactive Spark Shell
The easiest way to start using Spark is through the Scala shell:
bin/spark-shell --master yarn --proxy-user hzyaoqin
Secondly, implement the Authorizer Rule to Spark's extra Optimizations.
import org.apache.spark.sql.catalyst.optimizer.Authorizer
spark.experimental.extraOptimizations ++= Seq(Authorizer)
Check it out
scala> spark.experimental.extraOptimizations
res2: Seq[org.apache.spark.sql.catalyst.rules.Rule[org.apache.spark.sql.catalyst.plans.logical.LogicalPlan]] = List(org.apache.spark.sql.catalyst.optimizer.Authorizer$@1196537d)
Note that extra optimizations are appended to the end of all the inner optimizing rules.
It's good for us to do authorization after column pruning.
Your may notice that it only shut the door for men with a noble character but leave the door open for the scheming ones.
To avoid that, I suggest you modify ExperimentalMethods.scala#L47 and Bulid Spark of your own.
@volatile var extraOptimizations: Seq[Rule[LogicalPlan]] = Nil
to
@volatile val extraOptimizations: Seq[Rule[LogicalPlan]] = Seq(Authorizer)
Make extraOptimizations to a val
to avoid reassignment.
Without modifying, you either control the spark session such as supplying a Thrift/JDBC Sever or hope for "Manner maketh Man"
Suffer for the Authorization Pain
We create a ranger policy as below:
Check Privilage with some simple cases.
show database
Actually, user [hzyaoqin] show only see only one database -- tpcds_10g_ext, this is not a bug, but a compromise not hacking
scala> spark.sql("show databases").show
+--------------+
| databaseName|
+--------------+
| default|
| spark_test_db|
| tpcds_10g_ext|
+--------------+
switch database
scala> spark.sql("use spark_test_db").show
17/12/08 17:06:17 ERROR optimizer.Authorizer:
+===============================+
|Spark SQL Authorization Failure|
|-------------------------------|
|Permission denied: user [hzyaoqin] does not have [USE] privilege on [spark_test_db]
|-------------------------------|
|Spark SQL Authorization Failure|
+===============================+
Oops...
scala> spark.sql("use tpcds_10g_ext").show
++
||
++
++
LOL...
select
scala> spark.sql("select cp_type from catalog_page limit 1").show
17/12/08 17:09:58 ERROR optimizer.Authorizer:
+===============================+
|Spark SQL Authorization Failure|
|-------------------------------|
|Permission denied: user [hzyaoqin] does not have [SELECT] privilege on [tpcds_10g_ext/catalog_page/cp_type]
|-------------------------------|
|Spark SQL Authorization Failure|
+===============================+
Oops...
scala> spark.sql("select * from call_center limit 1").show
+-----------------+-----------------+-----------------+---------------+-----------------+---------------+--------+--------+------------+--------+--------+-----------+---------+--------------------+--------------------+-----------------+-----------+----------------+----------+---------------+----------------+--------------+--------------+---------------+-------+-----------------+--------+------+-------------+-------------+-----------------+
|cc_call_center_sk|cc_call_center_id|cc_rec_start_date|cc_rec_end_date|cc_closed_date_sk|cc_open_date_sk| cc_name|cc_class|cc_employees|cc_sq_ft|cc_hours| cc_manager|cc_mkt_id| cc_mkt_class| cc_mkt_desc|cc_market_manager|cc_division|cc_division_name|cc_company|cc_company_name|cc_street_number|cc_street_name|cc_street_type|cc_suite_number|cc_city| cc_county|cc_state|cc_zip| cc_country|cc_gmt_offset|cc_tax_percentage|
+-----------------+-----------------+-----------------+---------------+-----------------+---------------+--------+--------+------------+--------+--------+-----------+---------+--------------------+--------------------+-----------------+-----------+----------------+----------+---------------+----------------+--------------+--------------+---------------+-------+-----------------+--------+------+-------------+-------------+-----------------+
| 1| AAAAAAAABAAAAAAA| 1998-01-01| null| null| 2450952|NY Metro| large| 2| 1138| 8AM-4PM|Bob Belcher| 6|More than other a...|Shared others cou...| Julius Tran| 3| pri| 6| cally| 730| Ash Hill| Boulevard| Suite 0| Midway|Williamson County| TN| 31904|United States| -5.00| 0.11|
+-----------------+-----------------+-----------------+---------------+-----------------+---------------+--------+--------+------------+--------+--------+-----------+---------+--------------------+--------------------+-----------------+-----------+----------------+----------+---------------+----------------+--------------+--------------+---------------+-------+-----------------+--------+------+-------------+-------------+-----------------+
LOL...
Dataset/DataFrame
scala> spark.read.table("catalog_page").limit(1).collect
17/12/11 14:46:33 ERROR optimizer.Authorizer:
+===============================+
|Spark SQL Authorization Failure|
|-------------------------------|
|Permission denied: user [hzyaoqin] does not have [SELECT] privilege on [tpcds_10g_ext/catalog_page/cp_catalog_page_sk,cp_catalog_page_id,cp_promo_id,cp_start_date_sk,cp_end_date_sk,cp_department,cp_catalog_number,cp_catalog_page_number,cp_description,cp_type]
|-------------------------------|
|Spark SQL Authorization Failure|
+===============================+
Oops...
scala> spark.read.table("call_center").limit(1).collect
res3: Array[org.apache.spark.sql.Row] = Array([1,AAAAAAAABAAAAAAA,1998-01-01,null,null,2450952,NY Metro,large,2,1138,8AM-4PM,Bob Belcher,6,More than other authori,Shared others could not count fully dollars. New members ca,Julius Tran,3,pri,6,cally,730,Ash Hill,Boulevard,Suite 0,Midway,Williamson County,TN,31904,United States,-5.00,0.11])
LOL...
Testing or Contributing
GitHup repo: https://github.com/yaooqinn/spark-authorizer
Welcome to star, fork and contribute...