- 研究生师兄谈SCI论文写作心得
华大基因学院
即将毕业的高产博士师兄(博士在读期间累计发表SCI论文11篇,其中第一作者或通讯作者论文10篇),受学院委托介绍一下论文写作经验,希望能对大家更快、更轻松发表学术论文提供些许帮助。一、文献阅读在开展课题前,阅读文献是一个不可或缺的环节,只有充分了解你要做的课题,才能得心应手地设计课题,进而快速的围绕计划开展研究、准备数据,方便后期撰写论文。实际上,很多小伙伴常常花费大量时间看各种文献,但还是往往不
- Pytorch学习记录-接近人类水平的GEC(使用混合机器翻译模型)
我的昵称违规了
五月第二周要结束了,接下来的三个月主要是文献阅读,准备8、9月的开题报告,技术类的文献集中在GEC和Textmaching的应用方面,读完之后找demo复现,然后应用。理论方面的论文也都是英文的8.NearHuman-LevelPerformanceinGrammaticalErrorCorrectionwithHybridMachineTranslation昨天一天没看论文,发现我文献阅读速度太
- 文献阅读(42)——使用深度学习在眼底照中检测糖网并分类(综述)
柚子味的羊
文献阅读深度学习分类人工智能
使用深度学习在眼底照中检测糖网并分类(综述)Deeplearningfordiabeticretinopathydetectionandclassificationbasedonfundusimages:AreviewIF=6.698/Q1文章目录使用深度学习在眼底照中检测糖网并分类(综述)先验知识/知识拓展文章结构文章结果1.introduction方法1.眼底图像一般的分析pipeline2.
- 机器学习第二十五周周报 ConvLSTM
沽漓酒江
机器学习人工智能
文章目录week25ConvLSTM摘要Abstract一、李宏毅机器学习二、文献阅读1.题目2.abstract3.网络架构3.1降水预报问题的建模3.2ConvolutionalLSTM3.3编码-预测结构4.文献解读4.1Introduction4.2创新点4.3实验过程4.3.1Moving-MNISTDataset4.3.2雷达回波数据集4.4结论三、基于pytorch实现ConvLST
- 机器学习第二十八周周报 PINNs2
沽漓酒江
机器学习人工智能
文章目录week28PINNs2摘要Abstract一、Lipschitz条件二、文献阅读1.题目数据驱动的偏微分方程2.连续时间模型3.离散时间模型4.结论三、CLSTM1.任务要求2.实验结果3.实验代码3.1模型构建3.2训练过程代码小结参考文献week28PINNs2摘要本文主要讨论PINN。本文简要介绍了Lipschitz条件。其次本文展示了题为Physics-informedneura
- open3d k-means 聚类
云杂项
open3d持续更新kmeans聚类算法计算机视觉python机器学习
k-means聚类一、算法原理1、介绍2、算法步骤二、代码1、机器学习生成`kmeans`聚类2、点云学习生成聚类三、结果1、原点云2、机器学习生成`kmeans`聚类3、点云学习生成聚类四、相关链接一、算法原理1、介绍K-means聚类算法是一种无监督学习算法,主要用于数据聚类。该算法的主要目标是找到一个数据点的划分,使得每个数据点与其所在簇的质心(即该簇所有数据点的均值)之间的平方距离之和最小
- 文献阅读:金鱼端脑细胞类型图谱揭示了空间结构和细胞类型进化的多样性
程序员
:::block-1文献介绍文献题目Atelencephaloncelltypeatlasforgoldfishrevealsdiversityintheevolutionofspatialstructureandcelltypes\研究团队AmitZeisel(以色列理工学院)、RonenSegev(本·古里安大学)\发表时间2023-11-01\发表期刊ScienceAdvances\影响因子
- 文献阅读-nomogram文章(七)
cHarden13
题目:DevelopmentandValidationofaRadiomicsNomogramforPreoperativePredictionofLymphNodeMetastasisinColorectalCancerlogistic回归;放射组学;结直肠癌;淋巴结转移ref:医学方:临床医生的逆袭:深入解析临床研究预测类文章思路,带你成为科研“大牛”!一.纳入病人纳入2007.2-2010.
- 【思维导图认证班】戴兰第四幅思维导图作业-日程规划
一为宝贝
我没有选择一日的时间来进行规划,而是以一个市级课题的完成来规划具体的步骤,因为这段时间都在集中做课题,没有安排其他的事情,所以没安排具体的时间。步骤分四部分:准备、撰写、查重和提交。准备又分为文献阅读准备和人员访谈准备;撰写分为结题报告、成果鉴定、成果要报。查重为知网,小于30%。提交分电子版和纸质版。心得:撰写前梳理整个课题的环节,撰写中边阅读文献边记录自己撰写的思路,撰写后按照思维导图傻瓜式准
- 200320复盘
呼噜噜_77b5
上午上课,完成皮肤病学习。下午文献阅读,洗了个澡,然后完成单词,听力,阅读,口语。晚上部分完成老板任务。总得来讲,时间大部分利用了,效率和质量有待提高。
- 文献阅读:Mamba: Linear-Time Sequence Modeling with Selective State Spaces
Espresso Macchiato
文献阅读MambaTransformerSSSMS6SSM
文献阅读:Mamba:Linear-TimeSequenceModelingwithSelectiveStateSpaces1.文章简介2.方法介绍1.StateSpaceModels2.SelectiveStateSpaceModels3.实验考察&结论1.简单问题上的验证2.实际场景效果1.语言模型2.DNA模型3.语音模型3.细节考察1.速度和内存考察2.消融实验4.结论&思考文献链接:ht
- 点云——噪声(代码)
江河地笑
CGAL和点云c++算法
本人硕士期间研究的方向就是三维目标点云跟踪,对点云和跟踪有着较为深入的理解,但一直忙于实习未进行梳理,今天趁着在家休息对点云的噪声进行梳理,因为预处理对于点云项目是至关重要的,所有代码都是近期重新复现过。这篇之前写的,主要是对P2B点云跟踪进行复现以及学习记录,里面也包含了一些对点云的理解P2B论文复现——点云学习记录_etw_pytorch_utils.git-CSDN博客对PTT代码是更为熟悉
- 2019-7-20晨间日记
风雨兼程_007
今天是什么日子起床:0800就寝:2300天气:晴心情:美纪念日:无叫我起床的不是闹钟是梦想年度目标及关键点:结束一年的学校生活,重整行装再出发!本月重要成果:文献阅读报告选对方向今日三只青蛙/番茄钟看望阿姨,学习人家的好习惯看看优秀的人的家庭是怎么样的从中学习,思考人生成功日志-记录三五件有收获的事务给儿子修玩具枪,让其有自豪感陪娃学习,共同见证人家的成长信任感,信赖这东西靠培养财务检视看清楚自
- Pytorch学习记录-GEC语法纠错
我的昵称违规了
Pytorch学习记录-GEC语法纠错01五月第一周要结束了,接下来的三个月主要是文献阅读,准备8、9月的开题报告,技术类的文献集中在GEC和Textmaching的应用方面,读完之后找demo复现,然后应用。理论方面的论文也都是英文的,国内这块做的真的不行啊……学习计划GEC概念AlibabaatIJCNLP-2017Task1:EmbeddingGrammaticalFeaturesintoL
- scanpy 教程 1:预处理和聚类 3k PBMCs
Tiger Z
程序人生
「写在前面」学习一个软件最好的方法就是啃它的官方文档。本着自己学习、分享他人的态度,分享官方文档的中文教程。软件可能随时更新,建议配合官方文档一起阅读。推荐先按顺序阅读往期内容:文献篇:1.文献阅读:SCANPY:大规模单细胞基因表达数据分析2.文献阅读:scverse项目为单细胞组学数据分析提供了计算生态系统目录1预处理2主成分分析3计算邻域图4嵌入邻域图5对邻域图进行聚类6寻找标记基因官网教程
- 文献阅读:金鱼端脑细胞类型图谱揭示了空间结构和细胞类型进化的多样性
Tiger Z
程序人生
文献介绍「文献题目」Atelencephaloncelltypeatlasforgoldfishrevealsdiversityintheevolutionofspatialstructureandcelltypes「研究团队」AmitZeisel(以色列理工学院)、RonenSegev(本·古里安大学)「发表时间」2023-11-01「发表期刊」ScienceAdvances「影响因子」13.6
- 文献阅读02-2022-12-15
不学无术吗
题目:recentadvancesinRNAstructurome摘要:RNAstructuresareessentialtosupportRNAfunctionsandregulationinvariousbiologicalprocesses.Recently,arangeofnoveltechnologieshavebeendevelopedtodecodegenome-wideRNAstr
- 2024.2.4周报
Nyctophiliaa
人工智能深度学习
目录摘要一、文献阅读1、题目2、摘要3、模型架构4、文献解读一、Introduction二、实验三、结论二、PINN一、PINN比传统数值方法有哪些优势二、PINN方法三、正问题与反问题总结摘要本周我阅读了一篇题目为DeepResidualLearningforImageRecognition的文献,文章的贡献是作者提出了残差网络的思想,且证明了更深层的残差网络具有比VGG网络更低的复杂度和更高的
- 一种通过增强的面部边界实现精确面部表示的多级人脸超分辨率
qq_43314576
人工智能机器学习深度学习
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录摘要Abstract文献阅读:一种通过增强的面部边界实现精确面部表示的多级人脸超分辨率二、使用步骤1、研究背景2、方法提出3、相关方法3.1、FSR网络结构3.2、多阶段FSR网络结构4、实验工作5、方法比较LSTM代码学习2.1、什么是LSTM2.2、LSTM的处理过程2.3、LSTM代码分析总结摘要本周主要阅读了2020C
- 基于场景文字知识挖掘的细粒度图像识别算法
qq_43314576
算法深度学习人工智能
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录摘要Abstract文献阅读:基于场景文字知识挖掘的细粒度图像识别算法1、研究背景2、方法提出方法模块3、试验4、文章贡献二、RNN代码学习2.1、什么是RNN2.2、RNN的处理过程2.3、RNN简单代码实现总结摘要本周主要阅读了2022CVPR的文章,基于场景文字知识挖掘的细粒度图像识别算法,该论文提出了一种通过挖掘场景文
- 2019-05-06文献阅读记录
一行白鹭上青天
2019-05-06阅读记录:题目:基于RS和GIS的桓仁县乡村聚落景观格局分析(2005年发表)期刊:测绘与空间地理信息Geomatics&SpatialInformationTechnology作者:于淼;李建东摘要:运用RS和GIS技术以及景观分析方法,以辽东山区桓仁县典型的6个乡镇乡村聚落为研究对象,选取乡村聚落斑块数、斑块面积、斑块密度、平均斑块面积、面积加权平均斑块分维数等5个景观指数
- 对于CNN的文献阅读和识别手写数字的复现
白小李
深度学习cnn神经网络
摘要一、文献阅读1、题目2、摘要3、引言4、CNN模型结构5、实验过程6、同GS算法的对比二、CNN识别手写数字1、两个性质2、图像卷积总结摘要在论文方面阅读了基于CNN网络对于大气湍流相位的提取,对CNN的结构网络和运行原理进行了学习,对CNN识别手写数字方面展开了编码,采用MINST数据集进行训练模型,并计划通过窗口就行可视化展现。Ireadthepaperonphaseextractiono
- 每日早晚都读书1000/101-专业文献阅读|《外国建筑历史图说》刘松茯教授编著 通过阅读 专业书籍 获得多元思维的处世之法
李廿
历史发展到今天,古代、近现代和当代,不同的时代反映了不同的建筑观。刘松茯教授作为建筑教育学方面的一名资深中国学者,撰写这本《外国建筑历史图说》,并按照古代、近现代和当代三个不同时期对外国建筑史进行多方位、多角度、多层面的归纳和解读。1,首先,建筑是一种时代气息的表达。建筑与时代的关联十分密切,脱离了时代,建筑的生命力也就枯竭了。农业社会,建筑是手工艺产品:工业社会,建筑是机械化产品:信息社会,建筑
- 【文献阅读笔记】去噪学生网络:DeSTSeg
迎着黎明那道光
文献阅读笔记视觉异常检测笔记异常检测视觉检测深度学习
2023CVPR领域:异常检测目标:图像输入数据文章目录1、模型2、方法3、实验4、引用5、想法1、模型模型分为三个模块,包括教师网络、去噪学生网络和分割网络。分为两个阶段进行训练,第一阶段训练去噪学生网络,第二阶段训练分割网络。2、方法去噪学生网络,主要解决的是异常过度泛化的问题,利用编码器-解码器架构实现去噪。在第一个阶段将合成异常图像输入,训练去噪学生网络输出无异常图像。使用合成异常图像的目
- 【文献阅读笔记】无监督异常检测遇到噪声数据:STKD
迎着黎明那道光
文献阅读笔记视觉异常检测笔记异常检测视觉检测深度学习
2022ICIP领域:异常检测目标:图像输入数据文章目录1、什么是噪声数据2、解决的措施3、模型4、方法5、消融实验6、引用7、想法1、什么是噪声数据在无监督异常检测设置中,用于训练的数据均是正常图片,但由于缺陷可能是细微的,因种种原因可能无法保障用于训练的数据集内均是正常图像,有可能混有异常图像。如果仍然按照原有的假设进行异常检测,将会影响检测性能。2、解决的措施通过迭代执行异常检测步骤和训练步
- <文献阅读>用转移熵通过微阵列的时间序列推断基因调控网络(inferring gene regulatory networks from microarray time series data ...
我们一起舔过铁栏杆
这篇文章是2007的时候发表在IEEE杂志上,并没有收录到PubMed里面。是韩国的学者开发出来的方法。具体来说,通过转移熵计算基因对的因果关系(causalrelations),也就是转移熵的值。转移熵不是负数,而且大小代表因果关系的强度。题目:Inferringgeneregulatorynetworksfrommicroarraytimeseriesdatausingtransferentr
- 生信技能树《GEO数据框挖掘》笔记
鹿枫堂
友情提示:一定要有R语言的基础,建议学习生信技能树的《生信人这样这样学R语言》之后(最好再把中级20题做完),再来学习本系列视频!总的来说,理解了R语言中级20题之后,这一块的内容学起来就轻松了很多。1.通读文献阅读及规律这一块儿主要就是在你感兴趣的文章里,找到其测序信息的GSE号,在GEO数据库中直接检索该文件号。2.了解GEO数据库比如我们对GSE42872这个测序结果比较感兴趣,我们现在GE
- 第二十九周:文献阅读笔记(ResMLP)+ pytorch学习(Resnet代码实现)
@默然
笔记pytorch学习人工智能python深度学习机器学习
第二十九周:文献阅读笔记(ResMLP)摘要Abstract1.ResMLP1.1文献摘要1.2文献引言1.3ResMLP方法1.3.1整体流程1.3.2残差多感知机层1.4实验1.4.1数据集1.4.2超参数设置1.4.3主要结果1.4.4监督设置1.4.5自监督设置1.4.5知识蒸馏设置1.5ResMLP的创新点2.pytorch学习(ResNet代码实现)2.1数据集2.2文件结构2.3下载
- 第二十八周:文献阅读笔记(弱监督学习)+ pytorch学习
@默然
笔记学习pytorch深度学习人工智能python
第二十八周:文献阅读笔记(弱监督学习)摘要Abstract1.弱监督学习1.1.文献摘要1.2.引言1.3.不完全监督1.3.1.主动学习与半监督学习1.3.2.通过人工干预1.3.3.无需人工干预1.4.不确切的监督1.5.不准确的监督1.6.弱监督学习的创新点2.pytorch学习2.1.对现有模型进行修改2.2.优化器的使用2.3.完整的模型训练套路总结摘要弱监督学习是一种机器学习方法,其训
- 第二十七周:文献阅读笔记
@默然
笔记
第二十七周:文献阅读笔记摘要AbstractDenseNet网络1.文献摘要2.引言3.ResNets4.DenseBlock5.Poolinglayers6.ImplementationDetails7.Experiments8.FeatureReuse9.代码实现总结摘要DenseNet(密集连接网络)是一种深度学习神经网络架构,由KaimingHe等人在2017年提出。相较于传统的卷积神经网
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,