Initializer类主要负责SLAM系统的初始化,在ORBSLAM2中初始化非常重要。主要是单目初始化问题,这里同时计算两个模型:用于平面场景的单应性矩阵H和用于非平面场景的基础矩阵F,然后通过一个评分规则来选择合适的模型,恢复相机的旋转矩阵R和平移向量t。
/**
* @brief 单目的地图初始化
*
* 并行地计算基础矩阵和单应性矩阵,选取其中一个模型,恢复出最开始两帧之间的相对姿态以及点云
* 得到初始两帧的匹配、相对运动、初始MapPoints
*/
void Tracking::MonocularInitialization()
{
// 如果单目初始器还没有被创建,则创建单目初始器
if(!mpInitializer)
{
// Set Reference Frame
// 单目初始帧的特征点数必须大于100
if(mCurrentFrame.mvKeys.size()>100)
{
// 步骤1:得到用于初始化的第一帧,初始化需要两帧
mInitialFrame = Frame(mCurrentFrame);
// 记录最近的一帧
mLastFrame = Frame(mCurrentFrame);
// mvbPrevMatched最大的情况就是所有特征点都被跟踪上
//mvbPrevMatched 存放在前一个关键帧的特征点 2019.05.13 lishuwei
mvbPrevMatched.resize(mCurrentFrame.mvKeysUn.size());
for(size_t i=0; i(NULL);
fill(mvIniMatches.begin(),mvIniMatches.end(),-1);
return;
}
// Find correspondences
// 步骤3:在mInitialFrame与mCurrentFrame中找匹配的特征点对
// mvbPrevMatched为前一帧的特征点,存储了mInitialFrame中哪些点将进行接下来的匹配
// mvIniMatches存储mInitialFrame,mCurrentFrame之间匹配的特征点
ORBmatcher matcher(0.9,true);
int nmatches = matcher.SearchForInitialization(mInitialFrame,mCurrentFrame,mvbPrevMatched,mvIniMatches,100);
// Check if there are enough correspondences
// 步骤4:如果初始化的两帧之间的匹配点太少,重新初始化
if(nmatches<100)
{
delete mpInitializer;
mpInitializer = static_cast(NULL);
return;
}
cv::Mat Rcw; // Current Camera Rotation
cv::Mat tcw; // Current Camera Translation
vector vbTriangulated; // Triangulated Correspondences (mvIniMatches)
// 步骤5:通过H模型或F模型进行单目初始化,得到两帧间相对运动、初始MapPoints
if(mpInitializer->Initialize(mCurrentFrame, mvIniMatches, Rcw, tcw, mvIniP3D, vbTriangulated))
{
// 步骤6:删除那些无法进行三角化的匹配点
for(size_t i=0, iend=mvIniMatches.size(); i=0 && !vbTriangulated[i])
{
mvIniMatches[i]=-1;
nmatches--;
}
}
// Set Frame Poses
// 将初始化的第一帧作为世界坐标系,因此第一帧变换矩阵为单位矩阵
mInitialFrame.SetPose(cv::Mat::eye(4,4,CV_32F));
// 由Rcw和tcw构造Tcw,并赋值给mTcw,mTcw为世界坐标系到该帧的变换矩阵
cv::Mat Tcw = cv::Mat::eye(4,4,CV_32F);
Rcw.copyTo(Tcw.rowRange(0,3).colRange(0,3));
tcw.copyTo(Tcw.rowRange(0,3).col(3));
mCurrentFrame.SetPose(Tcw);
// 步骤6:将三角化得到的3D点包装成MapPoints
// Initialize函数会得到mvIniP3D,
// mvIniP3D是cv::Point3f类型的一个容器,是个存放3D点的临时变量,
// CreateInitialMapMonocular将3D点包装成MapPoint类型存入KeyFrame和Map中
CreateInitialMapMonocular();
}
}
}
大体分为五个步骤:
1.找到初始对应点
int nmatches = matcher.SearchForInitialization(mInitialFrame,mCurrentFrame,mvbPrevMatched,mvIniMatches,100);
在当前帧Fc中提取ORB特征点,与参考帧Fr进行匹配。初始化匹配对数少于100,重新构造参考帧。一直到到满足,实现较为鲁邦的初始化
2.同时计算两个模型
在找到对应点之后,开始调用Initializer.cc中的Initializer::Initialized函数进行初始化工作。为了计算R和t,ORB_SLAM为了针对平面和非平面场景选择最合适的模型,同时开启了两个线程,分别计算单应性矩阵Hcr和基础矩阵Fcr。如下所示:
3.模型选择
文中认为,当场景是一个平面、或近似为一个平面、或者视差较小的时候,可以使用单应性矩阵H,而使用基础矩阵F恢复运动,需要场景是一个非平面、视差大的场景。这个时候,文中使用下面所示的一个机制,来估计两个模型的优劣:
当RH大于0.45时,选择从单应性变换矩阵还原运动。不过ORB_SLAM2源代码中使用的是0.4作为阈值
4.运动恢复(sfm)
选择好模型后,就可以恢复运动。
5.集束调整
最后使用一个全局集束调整(BA),优化初始化结果。这一部分是在Tracking.cc中的CreateInitialMapMonocular()函数中,使用了如下语句:
Optimizer::GlobalBundleAdjustemnt(mpMap,20);
Tracking.cc中的CreateInitialMapMonocular()如下
/**
* @brief CreateInitialMapMonocular
*
* 为单目摄像头三角化生成MapPoints
*/
void Tracking::CreateInitialMapMonocular()
{
// Create KeyFrames
KeyFrame* pKFini = new KeyFrame(mInitialFrame,mpMap,mpKeyFrameDB);
KeyFrame* pKFcur = new KeyFrame(mCurrentFrame,mpMap,mpKeyFrameDB);
// 步骤1:将初始关键帧的描述子转为BoW
pKFini->ComputeBoW();
// 步骤2:将当前关键帧的描述子转为BoW
pKFcur->ComputeBoW();
// Insert KFs in the map
// 步骤3:将关键帧插入到地图
// 凡是关键帧,都要插入地图
mpMap->AddKeyFrame(pKFini);
mpMap->AddKeyFrame(pKFcur);
// Create MapPoints and asscoiate to keyframes
// 步骤4:将3D点包装成MapPoints
for(size_t i=0; iAddMapPoint(pMP,i);
pKFcur->AddMapPoint(pMP,mvIniMatches[i]);
// a.表示该MapPoint可以被哪个KeyFrame的哪个特征点观测到
pMP->AddObservation(pKFini,i);
pMP->AddObservation(pKFcur,mvIniMatches[i]);
// b.从众多观测到该MapPoint的特征点中挑选区分读最高的描述子
pMP->ComputeDistinctiveDescriptors();
// c.更新该MapPoint平均观测方向以及观测距离的范围
pMP->UpdateNormalAndDepth();
//Fill Current Frame structure
mCurrentFrame.mvpMapPoints[mvIniMatches[i]] = pMP;
mCurrentFrame.mvbOutlier[mvIniMatches[i]] = false;
//Add to Map
// 步骤4.4:在地图中添加该MapPoint
mpMap->AddMapPoint(pMP);
}
// Update Connections
// 步骤5:更新关键帧间的连接关系
// 在3D点和关键帧之间建立边,每个边有一个权重,边的权重是该关键帧与当前帧公共3D点的个数
pKFini->UpdateConnections();
pKFcur->UpdateConnections();
// Bundle Adjustment
cout << "New Map created with " << mpMap->MapPointsInMap() << " points" << endl;
// 步骤5:BA优化
Optimizer::GlobalBundleAdjustemnt(mpMap,20);
// Set median depth to 1
// 步骤6:!!!将MapPoints的中值深度归一化到1,并归一化两帧之间变换
// 评估关键帧场景深度,q=2表示中值
float medianDepth = pKFini->ComputeSceneMedianDepth(2);
float invMedianDepth = 1.0f/medianDepth;
if(medianDepth<0 || pKFcur->TrackedMapPoints(1)<100)
{
cout << "Wrong initialization, reseting..." << endl;
Reset();
return;
}
// Scale initial baseline
cv::Mat Tc2w = pKFcur->GetPose();
// x/z y/z 将z归一化到1
Tc2w.col(3).rowRange(0,3) = Tc2w.col(3).rowRange(0,3)*invMedianDepth;
pKFcur->SetPose(Tc2w);
// Scale points
// 把3D点的尺度也归一化到1
vector vpAllMapPoints = pKFini->GetMapPointMatches();
for(size_t iMP=0; iMPSetWorldPos(pMP->GetWorldPos()*invMedianDepth);
}
}
// 这部分和SteroInitialization()相似
mpLocalMapper->InsertKeyFrame(pKFini);
mpLocalMapper->InsertKeyFrame(pKFcur);
mCurrentFrame.SetPose(pKFcur->GetPose());
mnLastKeyFrameId=mCurrentFrame.mnId;
mpLastKeyFrame = pKFcur;
mvpLocalKeyFrames.push_back(pKFcur);
mvpLocalKeyFrames.push_back(pKFini);
mvpLocalMapPoints=mpMap->GetAllMapPoints();
mpReferenceKF = pKFcur;
mCurrentFrame.mpReferenceKF = pKFcur;
mLastFrame = Frame(mCurrentFrame);
mpMap->SetReferenceMapPoints(mvpLocalMapPoints);
mpMapDrawer->SetCurrentCameraPose(pKFcur->GetPose());
mpMap->mvpKeyFrameOrigins.push_back(pKFini);
mState=OK;// 初始化成功,至此,初始化过程完成
}
initializer.h
#ifndef INITIALIZER_H
#define INITIALIZER_H
#include
#include "Frame.h"
namespace ORB_SLAM2
{
// THIS IS THE INITIALIZER FOR MONOCULAR SLAM. NOT USED IN THE STEREO OR RGBD CASE.
/**
* @brief 单目SLAM初始化相关,双目和RGBD不会使用这个类
*/
class Initializer
{
typedef pair Match;
public:
// Fix the reference frame
// 用reference frame来初始化,这个reference frame就是SLAM正式开始的第一帧
Initializer(const Frame &ReferenceFrame, float sigma = 1.0, int iterations = 200);
// Computes in parallel a fundamental matrix and a homography
// Selects a model and tries to recover the motion and the structure from motion
// 用current frame,也就是用SLAM逻辑上的第二帧来初始化整个SLAM,得到最开始两帧之间的R t,以及点云
bool Initialize(const Frame &CurrentFrame, const vector &vMatches12,
cv::Mat &R21, cv::Mat &t21, vector &vP3D, vector &vbTriangulated);
private:
// 假设场景为平面情况下通过前两帧求取Homography矩阵(current frame 2 到 reference frame 1),并得到该模型的评分
void FindHomography(vector &vbMatchesInliers, float &score, cv::Mat &H21);
// 假设场景为非平面情况下通过前两帧求取Fundamental矩阵(current frame 2 到 reference frame 1),并得到该模型的评分
void FindFundamental(vector &vbInliers, float &score, cv::Mat &F21);
// 被FindHomography函数调用具体来算Homography矩阵
cv::Mat ComputeH21(const vector &vP1, const vector &vP2);
// 被FindFundamental函数调用具体来算Fundamental矩阵
cv::Mat ComputeF21(const vector &vP1, const vector &vP2);
// 被FindHomography函数调用,具体来算假设使用Homography模型的得分
float CheckHomography(const cv::Mat &H21, const cv::Mat &H12, vector &vbMatchesInliers, float sigma);
// 被FindFundamental函数调用,具体来算假设使用Fundamental模型的得分
float CheckFundamental(const cv::Mat &F21, vector &vbMatchesInliers, float sigma);
// 分解F矩阵,并从分解后的多个解中找出合适的R,t
bool ReconstructF(vector &vbMatchesInliers, cv::Mat &F21, cv::Mat &K,
cv::Mat &R21, cv::Mat &t21, vector &vP3D, vector &vbTriangulated, float minParallax, int minTriangulated);
// 分解H矩阵,并从分解后的多个解中找出合适的R,t
bool ReconstructH(vector &vbMatchesInliers, cv::Mat &H21, cv::Mat &K,
cv::Mat &R21, cv::Mat &t21, vector &vP3D, vector &vbTriangulated, float minParallax, int minTriangulated);
// 通过三角化方法,利用反投影矩阵将特征点恢复为3D点
void Triangulate(const cv::KeyPoint &kp1, const cv::KeyPoint &kp2, const cv::Mat &P1, const cv::Mat &P2, cv::Mat &x3D);
// 归一化三维空间点和帧间位移t
void Normalize(const vector &vKeys, vector &vNormalizedPoints, cv::Mat &T);
// ReconstructF调用该函数进行cheirality check,从而进一步找出F分解后最合适的解
int CheckRT(const cv::Mat &R, const cv::Mat &t, const vector &vKeys1, const vector &vKeys2,
const vector &vMatches12, vector &vbInliers,
const cv::Mat &K, vector &vP3D, float th2, vector &vbGood, float ¶llax);
// F矩阵通过结合内参可以得到Essential矩阵,该函数用于分解E矩阵,将得到4组解
void DecomposeE(const cv::Mat &E, cv::Mat &R1, cv::Mat &R2, cv::Mat &t);
// Keypoints from Reference Frame (Frame 1)
vector mvKeys1; ///< 存储Reference Frame中的特征点
// Keypoints from Current Frame (Frame 2)
vector mvKeys2; ///< 存储Current Frame中的特征点
// Current Matches from Reference to Current
// Reference Frame: 1, Current Frame: 2
vector mvMatches12; ///< Match的数据结构是pair,mvMatches12只记录Reference到Current匹配上的特征点对
vector mvbMatched1; ///< 记录Reference Frame的每个特征点在Current Frame是否有匹配的特征点
// Calibration
cv::Mat mK; ///< 相机内参
// Standard Deviation and Variance
float mSigma, mSigma2; ///< 测量误差
// Ransac max iterations
int mMaxIterations; ///< 算Fundamental和Homography矩阵时RANSAC迭代次数
// Ransac sets
vector > mvSets; ///< 二维容器,外层容器的大小为迭代次数,内层容器大小为每次迭代算H或F矩阵需要的点
};
} //namespace ORB_SLAM
#endif // INITIALIZER_H
initializer.cpp
/**
* This file is part of ORB-SLAM2.
*
* Copyright (C) 2014-2016 Raúl Mur-Artal (University of Zaragoza)
* For more information see
*
* ORB-SLAM2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* ORB-SLAM2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with ORB-SLAM2. If not, see .
*/
#include "Initializer.h"
#include "Thirdparty/DBoW2/DUtils/Random.h"
#include "Optimizer.h"
#include "ORBmatcher.h"
#include
namespace ORB_SLAM2
{
/**
* @brief 给定参考帧构造Initializer
*
* 用reference frame来初始化,这个reference frame就是SLAM正式开始的第一帧
* @param ReferenceFrame 参考帧
* @param sigma 测量误差
* @param iterations RANSAC迭代次数
*/
Initializer::Initializer(const Frame &ReferenceFrame, float sigma, int iterations)
{
mK = ReferenceFrame.mK.clone();
mvKeys1 = ReferenceFrame.mvKeysUn;
mSigma = sigma;
mSigma2 = sigma*sigma;
mMaxIterations = iterations;
}
/**
* @brief 并行地计算基础矩阵和单应性矩阵,选取其中一个模型,恢复出最开始两帧之间的相对姿态以及点云
*/
bool Initializer::Initialize(const Frame &CurrentFrame, const vector &vMatches12, cv::Mat &R21, cv::Mat &t21,
vector &vP3D, vector &vbTriangulated)
{
// Fill structures with current keypoints and matches with reference frame
// Reference Frame: 1, Current Frame: 2
// Frame2 特征点
mvKeys2 = CurrentFrame.mvKeysUn;
// mvMatches12记录匹配上的特征点对
mvMatches12.clear();
mvMatches12.reserve(mvKeys2.size());
// mvbMatched1记录每个特征点是否有匹配的特征点,
// 这个变量后面没有用到,后面只关心匹配上的特征点
mvbMatched1.resize(mvKeys1.size());
// 步骤1:组织特征点对
for(size_t i=0, iend=vMatches12.size();i=0)
{
mvMatches12.push_back(make_pair(i,vMatches12[i]));
mvbMatched1[i]=true;
}
else
mvbMatched1[i]=false;
}
// 匹配上的特征点的个数
const int N = mvMatches12.size();
// Indices for minimum set selection
// 新建一个容器vAllIndices,生成0到N-1的数作为特征点的索引
vector vAllIndices;
vAllIndices.reserve(N);
vector vAvailableIndices;
for(int i=0; i >(mMaxIterations,vector(8,0));
DUtils::Random::SeedRandOnce(0);
for(int it=0; it vbMatchesInliersH, vbMatchesInliersF;
float SH, SF; // score for H and F
cv::Mat H, F; // H and F
// ref是引用的功能:http://en.cppreference.com/w/cpp/utility/functional/ref
// 计算homograpy并打分
//https://blog.csdn.net/TH_NUM/article/details/81385917 ref 2019.05.13 lishuwei
thread threadH(&Initializer::FindHomography,this,ref(vbMatchesInliersH), ref(SH), ref(H));
// 计算fundamental matrix并打分
thread threadF(&Initializer::FindFundamental,this,ref(vbMatchesInliersF), ref(SF), ref(F));
// Wait until both threads have finished
threadH.join();
threadF.join();
// Compute ratio of scores
// 步骤4:计算得分比例,选取某个模型
float RH = SH/(SH+SF);
// Try to reconstruct from homography or fundamental depending on the ratio (0.40-0.45)
// 步骤5:从H矩阵或F矩阵中恢复R,t
if(RH>0.40)
return ReconstructH(vbMatchesInliersH,H,mK,R21,t21,vP3D,vbTriangulated,1.0,50);
else //if(pF_HF>0.6)
return ReconstructF(vbMatchesInliersF,F,mK,R21,t21,vP3D,vbTriangulated,1.0,50);
return false;
}
/**
* @brief 计算单应矩阵
*
* 假设场景为平面情况下通过前两帧求取Homography矩阵(current frame 2 到 reference frame 1),并得到该模型的评分
*/
void Initializer::FindHomography(vector &vbMatchesInliers, float &score, cv::Mat &H21)
{
// Number of putative matches
const int N = mvMatches12.size();
// Normalize coordinates
// 将mvKeys1和mvKey2归一化到均值为0,一阶绝对矩为1,归一化矩阵分别为T1、T2
vector vPn1, vPn2;
cv::Mat T1, T2;
Normalize(mvKeys1,vPn1, T1);
Normalize(mvKeys2,vPn2, T2);
cv::Mat T2inv = T2.inv();
// Best Results variables
// 最终最佳的MatchesInliers与得分
score = 0.0;
vbMatchesInliers = vector(N,false);
// Iteration variables
vector vPn1i(8);
vector vPn2i(8);
cv::Mat H21i, H12i;
// 每次RANSAC的MatchesInliers与得分
vector vbCurrentInliers(N,false);
float currentScore;
// Perform all RANSAC iterations and save the solution with highest score
for(int it=0; itscore)
{
H21 = H21i.clone();
vbMatchesInliers = vbCurrentInliers;
score = currentScore;
}
}
}
/**
* @brief 计算基础矩阵
*
* 假设场景为非平面情况下通过前两帧求取Fundamental矩阵(current frame 2 到 reference frame 1),并得到该模型的评分
*/
void Initializer::FindFundamental(vector &vbMatchesInliers, float &score, cv::Mat &F21)
{
// Number of putative matches
const int N = vbMatchesInliers.size();
// Normalize coordinates
vector vPn1, vPn2;
cv::Mat T1, T2;
Normalize(mvKeys1,vPn1, T1);
Normalize(mvKeys2,vPn2, T2);
cv::Mat T2t = T2.t();
// Best Results variables
score = 0.0;
vbMatchesInliers = vector(N,false);
// Iteration variables
vector vPn1i(8);
vector vPn2i(8);
cv::Mat F21i;
vector vbCurrentInliers(N,false);
float currentScore;
// Perform all RANSAC iterations and save the solution with highest score
for(int it=0; itscore)
{
F21 = F21i.clone();
vbMatchesInliers = vbCurrentInliers;
score = currentScore;
}
}
}
// |x'| | h1 h2 h3 ||x|
// |y'| = a | h4 h5 h6 ||y| 简写: x' = a H x, a为一个尺度因子
// |1 | | h7 h8 h9 ||1|
// 使用DLT(direct linear tranform)求解该模型
// x' = a H x
// ---> (x') 叉乘 (H x) = 0
// ---> Ah = 0
// A = | 0 0 0 -x -y -1 xy' yy' y'| h = | h1 h2 h3 h4 h5 h6 h7 h8 h9 |
// |-x -y -1 0 0 0 xx' yx' x'|
// 通过SVD求解Ah = 0,A'A最小特征值对应的特征向量即为解
/**
* @brief 从特征点匹配求homography(normalized DLT)
*
* @param vP1 归一化后的点, in reference frame
* @param vP2 归一化后的点, in current frame
* @return 单应矩阵
* @see Multiple View Geometry in Computer Vision - Algorithm 4.2 p109
*/
cv::Mat Initializer::ComputeH21(const vector &vP1, const vector &vP2)
{
const int N = vP1.size();
cv::Mat A(2*N,9,CV_32F); // 2N*9
for(int i=0; i(2*i,0) = 0.0;
A.at(2*i,1) = 0.0;
A.at(2*i,2) = 0.0;
A.at(2*i,3) = -u1;
A.at(2*i,4) = -v1;
A.at(2*i,5) = -1;
A.at(2*i,6) = v2*u1;
A.at(2*i,7) = v2*v1;
A.at(2*i,8) = v2;
A.at(2*i+1,0) = u1;
A.at(2*i+1,1) = v1;
A.at(2*i+1,2) = 1;
A.at(2*i+1,3) = 0.0;
A.at(2*i+1,4) = 0.0;
A.at(2*i+1,5) = 0.0;
A.at(2*i+1,6) = -u2*u1;
A.at(2*i+1,7) = -u2*v1;
A.at(2*i+1,8) = -u2;
}
cv::Mat u,w,vt;
cv::SVDecomp(A,w,u,vt,cv::SVD::MODIFY_A | cv::SVD::FULL_UV);
return vt.row(8).reshape(0, 3); // v的最后一列
}
// x'Fx = 0 整理可得:Af = 0
// A = | x'x x'y x' y'x y'y y' x y 1 |, f = | f1 f2 f3 f4 f5 f6 f7 f8 f9 |
// 通过SVD求解Af = 0,A'A最小特征值对应的特征向量即为解
/**
* @brief 从特征点匹配求fundamental matrix(normalized 8点法)
* @param vP1 归一化后的点, in reference frame
* @param vP2 归一化后的点, in current frame
* @return 基础矩阵
* @see Multiple View Geometry in Computer Vision - Algorithm 11.1 p282 (中文版 p191)
*/
cv::Mat Initializer::ComputeF21(const vector &vP1,const vector &vP2)
{
const int N = vP1.size();
cv::Mat A(N,9,CV_32F); // N*9
for(int i=0; i(i,0) = u2*u1;
A.at(i,1) = u2*v1;
A.at(i,2) = u2;
A.at(i,3) = v2*u1;
A.at(i,4) = v2*v1;
A.at(i,5) = v2;
A.at(i,6) = u1;
A.at(i,7) = v1;
A.at(i,8) = 1;
}
cv::Mat u,w,vt;
cv::SVDecomp(A,w,u,vt,cv::SVD::MODIFY_A | cv::SVD::FULL_UV);
cv::Mat Fpre = vt.row(8).reshape(0, 3); // v的最后一列
cv::SVDecomp(Fpre,w,u,vt,cv::SVD::MODIFY_A | cv::SVD::FULL_UV);
w.at(2)=0; // 秩2约束,将第3个奇异值设为0
return u*cv::Mat::diag(w)*vt;
}
/**
* @brief 对给定的homography matrix打分
*
* @see
* - Author's paper - IV. AUTOMATIC MAP INITIALIZATION (2)
* - Multiple View Geometry in Computer Vision - symmetric transfer errors: 4.2.2 Geometric distance
* - Multiple View Geometry in Computer Vision - model selection 4.7.1 RANSAC
*/
float Initializer::CheckHomography(const cv::Mat &H21, const cv::Mat &H12, vector &vbMatchesInliers, float sigma)
{
const int N = mvMatches12.size();
// |h11 h12 h13|
// |h21 h22 h23|
// |h31 h32 h33|
const float h11 = H21.at(0,0);
const float h12 = H21.at(0,1);
const float h13 = H21.at(0,2);
const float h21 = H21.at(1,0);
const float h22 = H21.at(1,1);
const float h23 = H21.at(1,2);
const float h31 = H21.at(2,0);
const float h32 = H21.at(2,1);
const float h33 = H21.at(2,2);
// |h11inv h12inv h13inv|
// |h21inv h22inv h23inv|
// |h31inv h32inv h33inv|
const float h11inv = H12.at(0,0);
const float h12inv = H12.at(0,1);
const float h13inv = H12.at(0,2);
const float h21inv = H12.at(1,0);
const float h22inv = H12.at(1,1);
const float h23inv = H12.at(1,2);
const float h31inv = H12.at(2,0);
const float h32inv = H12.at(2,1);
const float h33inv = H12.at(2,2);
vbMatchesInliers.resize(N);
float score = 0;
// 基于卡方检验计算出的阈值(假设测量有一个像素的偏差)
const float th = 5.991;
//信息矩阵,方差平方的倒数
const float invSigmaSquare = 1.0/(sigma*sigma);
// N对特征匹配点
for(int i=0; ith)
bIn = false;
else
score += th - chiSquare1;
// Reprojection error in second image
// x1in2 = H21*x1
// 将图像1中的特征点单应到图像2中
const float w1in2inv = 1.0/(h31*u1+h32*v1+h33);
const float u1in2 = (h11*u1+h12*v1+h13)*w1in2inv;
const float v1in2 = (h21*u1+h22*v1+h23)*w1in2inv;
const float squareDist2 = (u2-u1in2)*(u2-u1in2)+(v2-v1in2)*(v2-v1in2);
const float chiSquare2 = squareDist2*invSigmaSquare;
if(chiSquare2>th)
bIn = false;
else
score += th - chiSquare2;
if(bIn)
vbMatchesInliers[i]=true;
else
vbMatchesInliers[i]=false;
}
return score;
}
/**
* @brief 对给定的fundamental matrix打分
*
* @see
* - Author's paper - IV. AUTOMATIC MAP INITIALIZATION (2)
* - Multiple View Geometry in Computer Vision - symmetric transfer errors: 4.2.2 Geometric distance
* - Multiple View Geometry in Computer Vision - model selection 4.7.1 RANSAC
*/
float Initializer::CheckFundamental(const cv::Mat &F21, vector &vbMatchesInliers, float sigma)
{
const int N = mvMatches12.size();
const float f11 = F21.at(0,0);
const float f12 = F21.at(0,1);
const float f13 = F21.at(0,2);
const float f21 = F21.at(1,0);
const float f22 = F21.at(1,1);
const float f23 = F21.at(1,2);
const float f31 = F21.at(2,0);
const float f32 = F21.at(2,1);
const float f33 = F21.at(2,2);
vbMatchesInliers.resize(N);
float score = 0;
// 基于卡方检验计算出的阈值(假设测量有一个像素的偏差)
const float th = 3.841;
const float thScore = 5.991;
const float invSigmaSquare = 1.0/(sigma*sigma);
for(int i=0; ith)
bIn = false;
else
score += thScore - chiSquare1;
// Reprojection error in second image
// l1 =x2tF21=(a1,b1,c1)
const float a1 = f11*u2+f21*v2+f31;
const float b1 = f12*u2+f22*v2+f32;
const float c1 = f13*u2+f23*v2+f33;
const float num1 = a1*u1+b1*v1+c1;
const float squareDist2 = num1*num1/(a1*a1+b1*b1);
const float chiSquare2 = squareDist2*invSigmaSquare;
if(chiSquare2>th)
bIn = false;
else
score += thScore - chiSquare2;
if(bIn)
vbMatchesInliers[i]=true;
else
vbMatchesInliers[i]=false;
}
return score;
}
// |0 -1 0|
// E = U Sigma V' let W = |1 0 0|
// |0 0 1|
// 得到4个解 E = [R|t]
// R1 = UWV' R2 = UW'V' t1 = U3 t2 = -U3
/**
* @brief 从F恢复R t
*
* 度量重构
* 1. 由Fundamental矩阵结合相机内参K,得到Essential矩阵: \f$ E = k'^T F k \f$
* 2. SVD分解得到R t
* 3. 进行cheirality check, 从四个解中找出最合适的解
*
* @see Multiple View Geometry in Computer Vision - Result 9.19 p259
*/
bool Initializer::ReconstructF(vector &vbMatchesInliers, cv::Mat &F21, cv::Mat &K,
cv::Mat &R21, cv::Mat &t21, vector &vP3D, vector &vbTriangulated, float minParallax, int minTriangulated)
{
int N=0;
for(size_t i=0, iend = vbMatchesInliers.size() ; i vP3D1, vP3D2, vP3D3, vP3D4;
vector vbTriangulated1,vbTriangulated2,vbTriangulated3, vbTriangulated4;
float parallax1,parallax2, parallax3, parallax4;
int nGood1 = CheckRT(R1,t1,mvKeys1,mvKeys2,mvMatches12,vbMatchesInliers,K, vP3D1, 4.0*mSigma2, vbTriangulated1, parallax1);
int nGood2 = CheckRT(R2,t1,mvKeys1,mvKeys2,mvMatches12,vbMatchesInliers,K, vP3D2, 4.0*mSigma2, vbTriangulated2, parallax2);
int nGood3 = CheckRT(R1,t2,mvKeys1,mvKeys2,mvMatches12,vbMatchesInliers,K, vP3D3, 4.0*mSigma2, vbTriangulated3, parallax3);
int nGood4 = CheckRT(R2,t2,mvKeys1,mvKeys2,mvMatches12,vbMatchesInliers,K, vP3D4, 4.0*mSigma2, vbTriangulated4, parallax4);
int maxGood = max(nGood1,max(nGood2,max(nGood3,nGood4)));
R21 = cv::Mat();
t21 = cv::Mat();
// minTriangulated为可以三角化恢复三维点的个数
int nMinGood = max(static_cast(0.9*N),minTriangulated);
int nsimilar = 0;
if(nGood1>0.7*maxGood)
nsimilar++;
if(nGood2>0.7*maxGood)
nsimilar++;
if(nGood3>0.7*maxGood)
nsimilar++;
if(nGood4>0.7*maxGood)
nsimilar++;
// If there is not a clear winner or not enough triangulated points reject initialization
// 四个结果中如果没有明显的最优结果,则返回失败
if(maxGood1)
{
return false;
}
// If best reconstruction has enough parallax initialize
// 比较大的视差角
if(maxGood==nGood1)
{
if(parallax1>minParallax)
{
vP3D = vP3D1;
vbTriangulated = vbTriangulated1;
R1.copyTo(R21);
t1.copyTo(t21);
return true;
}
}else if(maxGood==nGood2)
{
if(parallax2>minParallax)
{
vP3D = vP3D2;
vbTriangulated = vbTriangulated2;
R2.copyTo(R21);
t1.copyTo(t21);
return true;
}
}else if(maxGood==nGood3)
{
if(parallax3>minParallax)
{
vP3D = vP3D3;
vbTriangulated = vbTriangulated3;
R1.copyTo(R21);
t2.copyTo(t21);
return true;
}
}else if(maxGood==nGood4)
{
if(parallax4>minParallax)
{
vP3D = vP3D4;
vbTriangulated = vbTriangulated4;
R2.copyTo(R21);
t2.copyTo(t21);
return true;
}
}
return false;
}
// H矩阵分解常见有两种方法:Faugeras SVD-based decomposition 和 Zhang SVD-based decomposition
// 参考文献:Motion and structure from motion in a piecewise plannar environment
// 这篇参考文献和下面的代码使用了Faugeras SVD-based decomposition算法
/**
* @brief 从H恢复R t
*
* @see
* - Faugeras et al, Motion and structure from motion in a piecewise planar environment. International Journal of Pattern Recognition and Artificial Intelligence, 1988.
* - Deeper understanding of the homography decomposition for vision-based control
*/
bool Initializer::ReconstructH(vector &vbMatchesInliers, cv::Mat &H21, cv::Mat &K,
cv::Mat &R21, cv::Mat &t21, vector &vP3D, vector &vbTriangulated, float minParallax, int minTriangulated)
{
int N=0;
for(size_t i=0, iend = vbMatchesInliers.size() ; i(0);
float d2 = w.at(1);
float d3 = w.at(2);
// SVD分解的正常情况是特征值降序排列
if(d1/d2<1.00001 || d2/d3<1.00001)
{
return false;
}
vector vR, vt, vn;
vR.reserve(8);
vt.reserve(8);
vn.reserve(8);
//n'=[x1 0 x3] 4 posibilities e1=e3=1, e1=1 e3=-1, e1=-1 e3=1, e1=e3=-1
// 法向量n'= [x1 0 x3] 对应ppt的公式17
float aux1 = sqrt((d1*d1-d2*d2)/(d1*d1-d3*d3));
float aux3 = sqrt((d2*d2-d3*d3)/(d1*d1-d3*d3));
float x1[] = {aux1,aux1,-aux1,-aux1};
float x3[] = {aux3,-aux3,aux3,-aux3};
//case d'=d2
// 计算ppt中公式19
float aux_stheta = sqrt((d1*d1-d2*d2)*(d2*d2-d3*d3))/((d1+d3)*d2);
float ctheta = (d2*d2+d1*d3)/((d1+d3)*d2);
float stheta[] = {aux_stheta, -aux_stheta, -aux_stheta, aux_stheta};
// 计算旋转矩阵 R‘,计算ppt中公式18
// | ctheta 0 -aux_stheta| | aux1|
// Rp = | 0 1 0 | tp = | 0 |
// | aux_stheta 0 ctheta | |-aux3|
// | ctheta 0 aux_stheta| | aux1|
// Rp = | 0 1 0 | tp = | 0 |
// |-aux_stheta 0 ctheta | | aux3|
// | ctheta 0 aux_stheta| |-aux1|
// Rp = | 0 1 0 | tp = | 0 |
// |-aux_stheta 0 ctheta | |-aux3|
// | ctheta 0 -aux_stheta| |-aux1|
// Rp = | 0 1 0 | tp = | 0 |
// | aux_stheta 0 ctheta | | aux3|
for(int i=0; i<4; i++)
{
cv::Mat Rp=cv::Mat::eye(3,3,CV_32F);
Rp.at(0,0)=ctheta;
Rp.at(0,2)=-stheta[i];
Rp.at(2,0)=stheta[i];
Rp.at(2,2)=ctheta;
cv::Mat R = s*U*Rp*Vt;
vR.push_back(R);
cv::Mat tp(3,1,CV_32F);
tp.at(0)=x1[i];
tp.at(1)=0;
tp.at(2)=-x3[i];
tp*=d1-d3;
// 这里虽然对t有归一化,并没有决定单目整个SLAM过程的尺度
// 因为CreateInitialMapMonocular函数对3D点深度会缩放,然后反过来对 t 有改变
cv::Mat t = U*tp;
vt.push_back(t/cv::norm(t));
cv::Mat np(3,1,CV_32F);
np.at(0)=x1[i];
np.at(1)=0;
np.at(2)=x3[i];
cv::Mat n = V*np;
if(n.at(2)<0)
n=-n;
vn.push_back(n);
}
//case d'=-d2
// 计算ppt中公式22
float aux_sphi = sqrt((d1*d1-d2*d2)*(d2*d2-d3*d3))/((d1-d3)*d2);
float cphi = (d1*d3-d2*d2)/((d1-d3)*d2);
float sphi[] = {aux_sphi, -aux_sphi, -aux_sphi, aux_sphi};
// 计算旋转矩阵 R‘,计算ppt中公式21
for(int i=0; i<4; i++)
{
cv::Mat Rp=cv::Mat::eye(3,3,CV_32F);
Rp.at(0,0)=cphi;
Rp.at(0,2)=sphi[i];
Rp.at(1,1)=-1;
Rp.at(2,0)=sphi[i];
Rp.at(2,2)=-cphi;
cv::Mat R = s*U*Rp*Vt;
vR.push_back(R);
cv::Mat tp(3,1,CV_32F);
tp.at(0)=x1[i];
tp.at(1)=0;
tp.at(2)=x3[i];
tp*=d1+d3;
cv::Mat t = U*tp;
vt.push_back(t/cv::norm(t));
cv::Mat np(3,1,CV_32F);
np.at(0)=x1[i];
np.at(1)=0;
np.at(2)=x3[i];
cv::Mat n = V*np;
if(n.at(2)<0)
n=-n;
vn.push_back(n);
}
int bestGood = 0;
int secondBestGood = 0;
int bestSolutionIdx = -1;
float bestParallax = -1;
vector bestP3D;
vector bestTriangulated;
// Instead of applying the visibility constraints proposed in the Faugeras' paper (which could fail for points seen with low parallax)
// We reconstruct all hypotheses and check in terms of triangulated points and parallax
// d'=d2和d'=-d2分别对应8组(R t)
for(size_t i=0; i<8; i++)
{
float parallaxi;
vector vP3Di;
vector vbTriangulatedi;
int nGood = CheckRT(vR[i],vt[i],mvKeys1,mvKeys2,mvMatches12,vbMatchesInliers,K,vP3Di, 4.0*mSigma2, vbTriangulatedi, parallaxi);
// 保留最优的和次优的
if(nGood>bestGood)
{
secondBestGood = bestGood;
bestGood = nGood;
bestSolutionIdx = i;
bestParallax = parallaxi;
bestP3D = vP3Di;
bestTriangulated = vbTriangulatedi;
}
else if(nGood>secondBestGood)
{
secondBestGood = nGood;
}
}
if(secondBestGood<0.75*bestGood && bestParallax>=minParallax && bestGood>minTriangulated && bestGood>0.9*N)
{
vR[bestSolutionIdx].copyTo(R21);
vt[bestSolutionIdx].copyTo(t21);
vP3D = bestP3D;
vbTriangulated = bestTriangulated;
return true;
}
return false;
}
// Trianularization: 已知匹配特征点对{x x'} 和 各自相机矩阵{P P'}, 估计三维点 X
// x' = P'X x = PX
// 它们都属于 x = aPX模型
// |X|
// |x| |p1 p2 p3 p4 ||Y| |x| |--p0--||.|
// |y| = a |p5 p6 p7 p8 ||Z| ===>|y| = a|--p1--||X|
// |z| |p9 p10 p11 p12||1| |z| |--p2--||.|
// 采用DLT的方法:x叉乘PX = 0
// |yp2 - p1| |0|
// |p0 - xp2| X = |0|
// |xp1 - yp0| |0|
// 两个点:
// |yp2 - p1 | |0|
// |p0 - xp2 | X = |0| ===> AX = 0
// |y'p2' - p1' | |0|
// |p0' - x'p2'| |0|
// 变成程序中的形式:
// |xp2 - p0 | |0|
// |yp2 - p1 | X = |0| ===> AX = 0
// |x'p2'- p0'| |0|
// |y'p2'- p1'| |0|
/**
* @brief 给定投影矩阵P1,P2和图像上的点kp1,kp2,从而恢复3D坐标
*
* @param kp1 特征点, in reference frame
* @param kp2 特征点, in current frame
* @param P1 投影矩阵P1
* @param P2 投影矩阵P2
* @param x3D 三维点
* @see Multiple View Geometry in Computer Vision - 12.2 Linear triangulation methods p312
*/
void Initializer::Triangulate(const cv::KeyPoint &kp1, const cv::KeyPoint &kp2, const cv::Mat &P1, const cv::Mat &P2, cv::Mat &x3D)
{
// 在DecomposeE函数和ReconstructH函数中对t有归一化
// 这里三角化过程中恢复的3D点深度取决于 t 的尺度,
// 但是这里恢复的3D点并没有决定单目整个SLAM过程的尺度
// 因为CreateInitialMapMonocular函数对3D点深度会缩放,然后反过来对 t 有改变
cv::Mat A(4,4,CV_32F);
A.row(0) = kp1.pt.x*P1.row(2)-P1.row(0);
A.row(1) = kp1.pt.y*P1.row(2)-P1.row(1);
A.row(2) = kp2.pt.x*P2.row(2)-P2.row(0);
A.row(3) = kp2.pt.y*P2.row(2)-P2.row(1);
cv::Mat u,w,vt;
cv::SVD::compute(A,w,u,vt,cv::SVD::MODIFY_A| cv::SVD::FULL_UV);
x3D = vt.row(3).t();
x3D = x3D.rowRange(0,3)/x3D.at(3);
}
/**
* @brief 归一化特征点到同一尺度(作为normalize DLT的输入)
*
* [x' y' 1]' = T * [x y 1]' \n
* 归一化后x', y'的均值为0,sum(abs(x_i'-0))=1,sum(abs((y_i'-0))=1
*
* @param vKeys 特征点在图像上的坐标
* @param vNormalizedPoints 特征点归一化后的坐标
* @param T 将特征点归一化的矩阵
*/
void Initializer::Normalize(const vector &vKeys, vector &vNormalizedPoints, cv::Mat &T)
{
float meanX = 0;
float meanY = 0;
const int N = vKeys.size();
vNormalizedPoints.resize(N);
for(int i=0; i(0,0) = sX;
T.at(1,1) = sY;
T.at(0,2) = -meanX*sX;
T.at(1,2) = -meanY*sY;
}
/**
* @brief 进行cheirality check,从而进一步找出F分解后最合适的解
*/
int Initializer::CheckRT(const cv::Mat &R, const cv::Mat &t, const vector &vKeys1, const vector &vKeys2,
const vector &vMatches12, vector &vbMatchesInliers,
const cv::Mat &K, vector &vP3D, float th2, vector &vbGood, float ¶llax)
{
// Calibration parameters
const float fx = K.at(0,0);
const float fy = K.at(1,1);
const float cx = K.at(0,2);
const float cy = K.at(1,2);
vbGood = vector(vKeys1.size(),false);
vP3D.resize(vKeys1.size());
vector vCosParallax;
vCosParallax.reserve(vKeys1.size());
// Camera 1 Projection Matrix K[I|0]
// 步骤1:得到一个相机的投影矩阵
// 以第一个相机的光心作为世界坐标系
cv::Mat P1(3,4,CV_32F,cv::Scalar(0));
K.copyTo(P1.rowRange(0,3).colRange(0,3));
// 第一个相机的光心在世界坐标系下的坐标
cv::Mat O1 = cv::Mat::zeros(3,1,CV_32F);
// Camera 2 Projection Matrix K[R|t]
// 步骤2:得到第二个相机的投影矩阵
cv::Mat P2(3,4,CV_32F);
R.copyTo(P2.rowRange(0,3).colRange(0,3));
t.copyTo(P2.rowRange(0,3).col(3));
P2 = K*P2;
// 第二个相机的光心在世界坐标系下的坐标
cv::Mat O2 = -R.t()*t;
int nGood=0;
for(size_t i=0, iend=vMatches12.size();i(0)) || !isfinite(p3dC1.at(1)) || !isfinite(p3dC1.at(2)))
{
vbGood[vMatches12[i].first]=false;
continue;
}
// Check parallax
// 步骤4:计算视差角余弦值
cv::Mat normal1 = p3dC1 - O1;
float dist1 = cv::norm(normal1);
cv::Mat normal2 = p3dC1 - O2;
float dist2 = cv::norm(normal2);
float cosParallax = normal1.dot(normal2)/(dist1*dist2);
// 步骤5:判断3D点是否在两个摄像头前方
// Check depth in front of first camera (only if enough parallax, as "infinite" points can easily go to negative depth)
// 步骤5.1:3D点深度为负,在第一个摄像头后方,淘汰
if(p3dC1.at(2)<=0 && cosParallax<0.99998)
continue;
// Check depth in front of second camera (only if enough parallax, as "infinite" points can easily go to negative depth)
// 步骤5.2:3D点深度为负,在第二个摄像头后方,淘汰
cv::Mat p3dC2 = R*p3dC1+t;
if(p3dC2.at(2)<=0 && cosParallax<0.99998)
continue;
// 步骤6:计算重投影误差
// Check reprojection error in first image
// 计算3D点在第一个图像上的投影误差
float im1x, im1y;
float invZ1 = 1.0/p3dC1.at(2);
im1x = fx*p3dC1.at(0)*invZ1+cx;
im1y = fy*p3dC1.at(1)*invZ1+cy;
float squareError1 = (im1x-kp1.pt.x)*(im1x-kp1.pt.x)+(im1y-kp1.pt.y)*(im1y-kp1.pt.y);
// 步骤6.1:重投影误差太大,跳过淘汰
// 一般视差角比较小时重投影误差比较大
if(squareError1>th2)
continue;
// Check reprojection error in second image
// 计算3D点在第二个图像上的投影误差
float im2x, im2y;
float invZ2 = 1.0/p3dC2.at(2);
im2x = fx*p3dC2.at(0)*invZ2+cx;
im2y = fy*p3dC2.at(1)*invZ2+cy;
float squareError2 = (im2x-kp2.pt.x)*(im2x-kp2.pt.x)+(im2y-kp2.pt.y)*(im2y-kp2.pt.y);
// 步骤6.2:重投影误差太大,跳过淘汰
// 一般视差角比较小时重投影误差比较大
if(squareError2>th2)
continue;
// 步骤7:统计经过检验的3D点个数,记录3D点视差角
vCosParallax.push_back(cosParallax);
vP3D[vMatches12[i].first] = cv::Point3f(p3dC1.at(0),p3dC1.at(1),p3dC1.at(2));
nGood++;
if(cosParallax<0.99998)
vbGood[vMatches12[i].first]=true;
}
// 步骤8:得到3D点中较大的视差角
if(nGood>0)
{
// 从小到大排序
sort(vCosParallax.begin(),vCosParallax.end());
// trick! 排序后并没有取最大的视差角
// 取一个较大的视差角
size_t idx = min(50,int(vCosParallax.size()-1));
parallax = acos(vCosParallax[idx])*180/CV_PI;
}
else
parallax=0;
return nGood;
}
/**
* @brief 分解Essential矩阵
*
* F矩阵通过结合内参可以得到Essential矩阵,分解E矩阵将得到4组解 \n
* 这4组解分别为[R1,t],[R1,-t],[R2,t],[R2,-t]
* @param E Essential Matrix
* @param R1 Rotation Matrix 1
* @param R2 Rotation Matrix 2
* @param t Translation
* @see Multiple View Geometry in Computer Vision - Result 9.19 p259
*/
void Initializer::DecomposeE(const cv::Mat &E, cv::Mat &R1, cv::Mat &R2, cv::Mat &t)
{
cv::Mat u,w,vt;
cv::SVD::compute(E,w,u,vt);
// 对 t 有归一化,但是这个地方并没有决定单目整个SLAM过程的尺度
// 因为CreateInitialMapMonocular函数对3D点深度会缩放,然后反过来对 t 有改变
u.col(2).copyTo(t);
t=t/cv::norm(t);
cv::Mat W(3,3,CV_32F,cv::Scalar(0));
W.at(0,1)=-1;
W.at(1,0)=1;
W.at(2,2)=1;
R1 = u*W*vt;
if(cv::determinant(R1)<0) // 旋转矩阵有行列式为1的约束
R1=-R1;
R2 = u*W.t()*vt;
if(cv::determinant(R2)<0)
R2=-R2;
}
} //namespace ORB_SLAM