ORBSLAM2理论与实战(12) 单目初始化initializer类

Initializer类主要负责SLAM系统的初始化,在ORBSLAM2中初始化非常重要。主要是单目初始化问题,这里同时计算两个模型:用于平面场景的单应性矩阵H和用于非平面场景的基础矩阵F,然后通过一个评分规则来选择合适的模型,恢复相机的旋转矩阵R和平移向量t。

/**
 * @brief 单目的地图初始化
 *
 * 并行地计算基础矩阵和单应性矩阵,选取其中一个模型,恢复出最开始两帧之间的相对姿态以及点云
 * 得到初始两帧的匹配、相对运动、初始MapPoints
 */
void Tracking::MonocularInitialization()
{
    // 如果单目初始器还没有被创建,则创建单目初始器
    if(!mpInitializer)
    {
        // Set Reference Frame
        // 单目初始帧的特征点数必须大于100
        if(mCurrentFrame.mvKeys.size()>100)
        {
            // 步骤1:得到用于初始化的第一帧,初始化需要两帧
            mInitialFrame = Frame(mCurrentFrame);
            // 记录最近的一帧
            mLastFrame = Frame(mCurrentFrame);
            // mvbPrevMatched最大的情况就是所有特征点都被跟踪上
            //mvbPrevMatched 存放在前一个关键帧的特征点   2019.05.13  lishuwei
            mvbPrevMatched.resize(mCurrentFrame.mvKeysUn.size());
            for(size_t i=0; i(NULL);
            fill(mvIniMatches.begin(),mvIniMatches.end(),-1);
            return;
        }

        // Find correspondences
        // 步骤3:在mInitialFrame与mCurrentFrame中找匹配的特征点对
        // mvbPrevMatched为前一帧的特征点,存储了mInitialFrame中哪些点将进行接下来的匹配
        // mvIniMatches存储mInitialFrame,mCurrentFrame之间匹配的特征点
        ORBmatcher matcher(0.9,true);
        int nmatches = matcher.SearchForInitialization(mInitialFrame,mCurrentFrame,mvbPrevMatched,mvIniMatches,100);

        // Check if there are enough correspondences
        // 步骤4:如果初始化的两帧之间的匹配点太少,重新初始化
        if(nmatches<100)
        {
            delete mpInitializer;
            mpInitializer = static_cast(NULL);
            return;
        }

        cv::Mat Rcw; // Current Camera Rotation
        cv::Mat tcw; // Current Camera Translation
        vector vbTriangulated; // Triangulated Correspondences (mvIniMatches)

        // 步骤5:通过H模型或F模型进行单目初始化,得到两帧间相对运动、初始MapPoints
        if(mpInitializer->Initialize(mCurrentFrame, mvIniMatches, Rcw, tcw, mvIniP3D, vbTriangulated))
        {
            // 步骤6:删除那些无法进行三角化的匹配点
            for(size_t i=0, iend=mvIniMatches.size(); i=0 && !vbTriangulated[i])
                {
                    mvIniMatches[i]=-1;
                    nmatches--;
                }
            }

            // Set Frame Poses
            // 将初始化的第一帧作为世界坐标系,因此第一帧变换矩阵为单位矩阵
            mInitialFrame.SetPose(cv::Mat::eye(4,4,CV_32F));
            // 由Rcw和tcw构造Tcw,并赋值给mTcw,mTcw为世界坐标系到该帧的变换矩阵
            cv::Mat Tcw = cv::Mat::eye(4,4,CV_32F);
            Rcw.copyTo(Tcw.rowRange(0,3).colRange(0,3));
            tcw.copyTo(Tcw.rowRange(0,3).col(3));
            mCurrentFrame.SetPose(Tcw);

            // 步骤6:将三角化得到的3D点包装成MapPoints
            // Initialize函数会得到mvIniP3D,
            // mvIniP3D是cv::Point3f类型的一个容器,是个存放3D点的临时变量,
            // CreateInitialMapMonocular将3D点包装成MapPoint类型存入KeyFrame和Map中
            CreateInitialMapMonocular();
        }
    }
}

大体分为五个步骤:

  1. 找到初始对应点
  2. 同时计算两个模型
  3. 模型选择
  4. 运动恢复(sfm)
  5. 集束调整

1.找到初始对应点

        int nmatches = matcher.SearchForInitialization(mInitialFrame,mCurrentFrame,mvbPrevMatched,mvIniMatches,100);

在当前帧Fc中提取ORB特征点,与参考帧Fr进行匹配。初始化匹配对数少于100,重新构造参考帧。一直到到满足,实现较为鲁邦的初始化

2.同时计算两个模型

 在找到对应点之后,开始调用Initializer.cc中的Initializer::Initialized函数进行初始化工作。为了计算R和t,ORB_SLAM为了针对平面和非平面场景选择最合适的模型,同时开启了两个线程,分别计算单应性矩阵Hcr和基础矩阵Fcr。如下所示:

3.模型选择

文中认为,当场景是一个平面、或近似为一个平面、或者视差较小的时候,可以使用单应性矩阵H,而使用基础矩阵F恢复运动,需要场景是一个非平面、视差大的场景。这个时候,文中使用下面所示的一个机制,来估计两个模型的优劣:

                                                                             
当RH大于0.45时,选择从单应性变换矩阵还原运动。不过ORB_SLAM2源代码中使用的是0.4作为阈值

4.运动恢复(sfm)

  选择好模型后,就可以恢复运动。

5.集束调整

  最后使用一个全局集束调整(BA),优化初始化结果。这一部分是在Tracking.cc中的CreateInitialMapMonocular()函数中,使用了如下语句:

Optimizer::GlobalBundleAdjustemnt(mpMap,20);

Tracking.cc中的CreateInitialMapMonocular()如下

/**
 * @brief CreateInitialMapMonocular
 *
 * 为单目摄像头三角化生成MapPoints
 */
void Tracking::CreateInitialMapMonocular()
{
    // Create KeyFrames
    KeyFrame* pKFini = new KeyFrame(mInitialFrame,mpMap,mpKeyFrameDB);
    KeyFrame* pKFcur = new KeyFrame(mCurrentFrame,mpMap,mpKeyFrameDB);

    // 步骤1:将初始关键帧的描述子转为BoW
    pKFini->ComputeBoW();
    // 步骤2:将当前关键帧的描述子转为BoW
    pKFcur->ComputeBoW();

    // Insert KFs in the map
    // 步骤3:将关键帧插入到地图
    // 凡是关键帧,都要插入地图
    mpMap->AddKeyFrame(pKFini);
    mpMap->AddKeyFrame(pKFcur);

    // Create MapPoints and asscoiate to keyframes
    // 步骤4:将3D点包装成MapPoints
    for(size_t i=0; iAddMapPoint(pMP,i);
        pKFcur->AddMapPoint(pMP,mvIniMatches[i]);

        // a.表示该MapPoint可以被哪个KeyFrame的哪个特征点观测到
        pMP->AddObservation(pKFini,i);
        pMP->AddObservation(pKFcur,mvIniMatches[i]);

        // b.从众多观测到该MapPoint的特征点中挑选区分读最高的描述子
        pMP->ComputeDistinctiveDescriptors();
        // c.更新该MapPoint平均观测方向以及观测距离的范围
        pMP->UpdateNormalAndDepth();

        //Fill Current Frame structure
        mCurrentFrame.mvpMapPoints[mvIniMatches[i]] = pMP;
        mCurrentFrame.mvbOutlier[mvIniMatches[i]] = false;

        //Add to Map
        // 步骤4.4:在地图中添加该MapPoint
        mpMap->AddMapPoint(pMP);
    }

    // Update Connections
    // 步骤5:更新关键帧间的连接关系
    // 在3D点和关键帧之间建立边,每个边有一个权重,边的权重是该关键帧与当前帧公共3D点的个数
    pKFini->UpdateConnections();
    pKFcur->UpdateConnections();

    // Bundle Adjustment
    cout << "New Map created with " << mpMap->MapPointsInMap() << " points" << endl;

    // 步骤5:BA优化
    Optimizer::GlobalBundleAdjustemnt(mpMap,20);

    // Set median depth to 1
    // 步骤6:!!!将MapPoints的中值深度归一化到1,并归一化两帧之间变换
    // 评估关键帧场景深度,q=2表示中值
    float medianDepth = pKFini->ComputeSceneMedianDepth(2);
    float invMedianDepth = 1.0f/medianDepth;

    if(medianDepth<0 || pKFcur->TrackedMapPoints(1)<100)
    {
        cout << "Wrong initialization, reseting..." << endl;
        Reset();
        return;
    }

    // Scale initial baseline
    cv::Mat Tc2w = pKFcur->GetPose();
    // x/z y/z 将z归一化到1 
    Tc2w.col(3).rowRange(0,3) = Tc2w.col(3).rowRange(0,3)*invMedianDepth;
    pKFcur->SetPose(Tc2w);

    // Scale points
    // 把3D点的尺度也归一化到1
    vector vpAllMapPoints = pKFini->GetMapPointMatches();
    for(size_t iMP=0; iMPSetWorldPos(pMP->GetWorldPos()*invMedianDepth);
        }
    }

    // 这部分和SteroInitialization()相似
    mpLocalMapper->InsertKeyFrame(pKFini);
    mpLocalMapper->InsertKeyFrame(pKFcur);

    mCurrentFrame.SetPose(pKFcur->GetPose());
    mnLastKeyFrameId=mCurrentFrame.mnId;
    mpLastKeyFrame = pKFcur;

    mvpLocalKeyFrames.push_back(pKFcur);
    mvpLocalKeyFrames.push_back(pKFini);
    mvpLocalMapPoints=mpMap->GetAllMapPoints();
    mpReferenceKF = pKFcur;
    mCurrentFrame.mpReferenceKF = pKFcur;

    mLastFrame = Frame(mCurrentFrame);

    mpMap->SetReferenceMapPoints(mvpLocalMapPoints);

    mpMapDrawer->SetCurrentCameraPose(pKFcur->GetPose());

    mpMap->mvpKeyFrameOrigins.push_back(pKFini);

    mState=OK;// 初始化成功,至此,初始化过程完成
}

initializer类

initializer.h

#ifndef INITIALIZER_H
#define INITIALIZER_H

#include
#include "Frame.h"


namespace ORB_SLAM2
{

// THIS IS THE INITIALIZER FOR MONOCULAR SLAM. NOT USED IN THE STEREO OR RGBD CASE.
/**
 * @brief 单目SLAM初始化相关,双目和RGBD不会使用这个类
 */
class Initializer
{
    typedef pair Match;

public:

    // Fix the reference frame
    // 用reference frame来初始化,这个reference frame就是SLAM正式开始的第一帧
    Initializer(const Frame &ReferenceFrame, float sigma = 1.0, int iterations = 200);

    // Computes in parallel a fundamental matrix and a homography
    // Selects a model and tries to recover the motion and the structure from motion
    // 用current frame,也就是用SLAM逻辑上的第二帧来初始化整个SLAM,得到最开始两帧之间的R t,以及点云
    bool Initialize(const Frame &CurrentFrame, const vector &vMatches12,
                    cv::Mat &R21, cv::Mat &t21, vector &vP3D, vector &vbTriangulated);


private:

    // 假设场景为平面情况下通过前两帧求取Homography矩阵(current frame 2 到 reference frame 1),并得到该模型的评分
    void FindHomography(vector &vbMatchesInliers, float &score, cv::Mat &H21);
    // 假设场景为非平面情况下通过前两帧求取Fundamental矩阵(current frame 2 到 reference frame 1),并得到该模型的评分
    void FindFundamental(vector &vbInliers, float &score, cv::Mat &F21);

    // 被FindHomography函数调用具体来算Homography矩阵
    cv::Mat ComputeH21(const vector &vP1, const vector &vP2);
    // 被FindFundamental函数调用具体来算Fundamental矩阵
    cv::Mat ComputeF21(const vector &vP1, const vector &vP2);

    // 被FindHomography函数调用,具体来算假设使用Homography模型的得分
    float CheckHomography(const cv::Mat &H21, const cv::Mat &H12, vector &vbMatchesInliers, float sigma);
    // 被FindFundamental函数调用,具体来算假设使用Fundamental模型的得分
    float CheckFundamental(const cv::Mat &F21, vector &vbMatchesInliers, float sigma);

    // 分解F矩阵,并从分解后的多个解中找出合适的R,t
    bool ReconstructF(vector &vbMatchesInliers, cv::Mat &F21, cv::Mat &K,
                      cv::Mat &R21, cv::Mat &t21, vector &vP3D, vector &vbTriangulated, float minParallax, int minTriangulated);

    // 分解H矩阵,并从分解后的多个解中找出合适的R,t
    bool ReconstructH(vector &vbMatchesInliers, cv::Mat &H21, cv::Mat &K,
                      cv::Mat &R21, cv::Mat &t21, vector &vP3D, vector &vbTriangulated, float minParallax, int minTriangulated);

    // 通过三角化方法,利用反投影矩阵将特征点恢复为3D点
    void Triangulate(const cv::KeyPoint &kp1, const cv::KeyPoint &kp2, const cv::Mat &P1, const cv::Mat &P2, cv::Mat &x3D);

    // 归一化三维空间点和帧间位移t
    void Normalize(const vector &vKeys, vector &vNormalizedPoints, cv::Mat &T);

    // ReconstructF调用该函数进行cheirality check,从而进一步找出F分解后最合适的解
    int CheckRT(const cv::Mat &R, const cv::Mat &t, const vector &vKeys1, const vector &vKeys2,
                       const vector &vMatches12, vector &vbInliers,
                       const cv::Mat &K, vector &vP3D, float th2, vector &vbGood, float ¶llax);

    // F矩阵通过结合内参可以得到Essential矩阵,该函数用于分解E矩阵,将得到4组解
    void DecomposeE(const cv::Mat &E, cv::Mat &R1, cv::Mat &R2, cv::Mat &t);


    // Keypoints from Reference Frame (Frame 1)
    vector mvKeys1; ///< 存储Reference Frame中的特征点

    // Keypoints from Current Frame (Frame 2)
    vector mvKeys2; ///< 存储Current Frame中的特征点

    // Current Matches from Reference to Current
    // Reference Frame: 1, Current Frame: 2
    vector mvMatches12; ///< Match的数据结构是pair,mvMatches12只记录Reference到Current匹配上的特征点对
    vector mvbMatched1; ///< 记录Reference Frame的每个特征点在Current Frame是否有匹配的特征点

    // Calibration
    cv::Mat mK; ///< 相机内参

    // Standard Deviation and Variance
    float mSigma, mSigma2; ///< 测量误差

    // Ransac max iterations
    int mMaxIterations; ///< 算Fundamental和Homography矩阵时RANSAC迭代次数

    // Ransac sets
    vector > mvSets; ///< 二维容器,外层容器的大小为迭代次数,内层容器大小为每次迭代算H或F矩阵需要的点

};

} //namespace ORB_SLAM

#endif // INITIALIZER_H


initializer.cpp

/**
* This file is part of ORB-SLAM2.
*
* Copyright (C) 2014-2016 Raúl Mur-Artal  (University of Zaragoza)
* For more information see 
*
* ORB-SLAM2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* ORB-SLAM2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with ORB-SLAM2. If not, see .
*/

#include "Initializer.h"

#include "Thirdparty/DBoW2/DUtils/Random.h"

#include "Optimizer.h"
#include "ORBmatcher.h"

#include

namespace ORB_SLAM2
{

/**
 * @brief 给定参考帧构造Initializer
 * 
 * 用reference frame来初始化,这个reference frame就是SLAM正式开始的第一帧
 * @param ReferenceFrame 参考帧
 * @param sigma          测量误差
 * @param iterations     RANSAC迭代次数
 */
Initializer::Initializer(const Frame &ReferenceFrame, float sigma, int iterations)
{
    mK = ReferenceFrame.mK.clone();

    mvKeys1 = ReferenceFrame.mvKeysUn;

    mSigma = sigma;
    mSigma2 = sigma*sigma;
    mMaxIterations = iterations;
}

/**
 * @brief 并行地计算基础矩阵和单应性矩阵,选取其中一个模型,恢复出最开始两帧之间的相对姿态以及点云
 */
bool Initializer::Initialize(const Frame &CurrentFrame, const vector &vMatches12, cv::Mat &R21, cv::Mat &t21,
                             vector &vP3D, vector &vbTriangulated)
{
    // Fill structures with current keypoints and matches with reference frame
    // Reference Frame: 1, Current Frame: 2
    // Frame2 特征点
    mvKeys2 = CurrentFrame.mvKeysUn;

    // mvMatches12记录匹配上的特征点对
    mvMatches12.clear();
    mvMatches12.reserve(mvKeys2.size());
    // mvbMatched1记录每个特征点是否有匹配的特征点,
    // 这个变量后面没有用到,后面只关心匹配上的特征点
    mvbMatched1.resize(mvKeys1.size());

    // 步骤1:组织特征点对
    for(size_t i=0, iend=vMatches12.size();i=0)
        {
            mvMatches12.push_back(make_pair(i,vMatches12[i]));
            mvbMatched1[i]=true;
        }
        else
            mvbMatched1[i]=false;
    }

    // 匹配上的特征点的个数
    const int N = mvMatches12.size();

    // Indices for minimum set selection
    // 新建一个容器vAllIndices,生成0到N-1的数作为特征点的索引
    vector vAllIndices;
    vAllIndices.reserve(N);
    vector vAvailableIndices;

    for(int i=0; i >(mMaxIterations,vector(8,0));

    DUtils::Random::SeedRandOnce(0);

    for(int it=0; it vbMatchesInliersH, vbMatchesInliersF;
    float SH, SF; // score for H and F
    cv::Mat H, F; // H and F

    // ref是引用的功能:http://en.cppreference.com/w/cpp/utility/functional/ref
    // 计算homograpy并打分
    //https://blog.csdn.net/TH_NUM/article/details/81385917   ref  2019.05.13  lishuwei
    thread threadH(&Initializer::FindHomography,this,ref(vbMatchesInliersH), ref(SH), ref(H));
    // 计算fundamental matrix并打分
    thread threadF(&Initializer::FindFundamental,this,ref(vbMatchesInliersF), ref(SF), ref(F));

    // Wait until both threads have finished
    threadH.join();
    threadF.join();

    // Compute ratio of scores
    // 步骤4:计算得分比例,选取某个模型
    float RH = SH/(SH+SF);

    // Try to reconstruct from homography or fundamental depending on the ratio (0.40-0.45)
    // 步骤5:从H矩阵或F矩阵中恢复R,t
    if(RH>0.40)
        return ReconstructH(vbMatchesInliersH,H,mK,R21,t21,vP3D,vbTriangulated,1.0,50);
    else //if(pF_HF>0.6)
        return ReconstructF(vbMatchesInliersF,F,mK,R21,t21,vP3D,vbTriangulated,1.0,50);

    return false;
}

/**
 * @brief 计算单应矩阵
 *
 * 假设场景为平面情况下通过前两帧求取Homography矩阵(current frame 2 到 reference frame 1),并得到该模型的评分
 */
void Initializer::FindHomography(vector &vbMatchesInliers, float &score, cv::Mat &H21)
{
    // Number of putative matches
    const int N = mvMatches12.size();

    // Normalize coordinates
    // 将mvKeys1和mvKey2归一化到均值为0,一阶绝对矩为1,归一化矩阵分别为T1、T2
    vector vPn1, vPn2;
    cv::Mat T1, T2;
    Normalize(mvKeys1,vPn1, T1);
    Normalize(mvKeys2,vPn2, T2);
    cv::Mat T2inv = T2.inv();

    // Best Results variables
    // 最终最佳的MatchesInliers与得分
    score = 0.0;
    vbMatchesInliers = vector(N,false);

    // Iteration variables
    vector vPn1i(8);
    vector vPn2i(8);
    cv::Mat H21i, H12i;
    // 每次RANSAC的MatchesInliers与得分
    vector vbCurrentInliers(N,false);
    float currentScore;

    // Perform all RANSAC iterations and save the solution with highest score
    for(int it=0; itscore)
        {
            H21 = H21i.clone();
            vbMatchesInliers = vbCurrentInliers;
            score = currentScore;
        }
    }
}

/**
 * @brief 计算基础矩阵
 *
 * 假设场景为非平面情况下通过前两帧求取Fundamental矩阵(current frame 2 到 reference frame 1),并得到该模型的评分
 */
void Initializer::FindFundamental(vector &vbMatchesInliers, float &score, cv::Mat &F21)
{
    // Number of putative matches
    const int N = vbMatchesInliers.size();

    // Normalize coordinates
    vector vPn1, vPn2;
    cv::Mat T1, T2;
    Normalize(mvKeys1,vPn1, T1);
    Normalize(mvKeys2,vPn2, T2);
    cv::Mat T2t = T2.t();

    // Best Results variables
    score = 0.0;
    vbMatchesInliers = vector(N,false);

    // Iteration variables
    vector vPn1i(8);
    vector vPn2i(8);
    cv::Mat F21i;
    vector vbCurrentInliers(N,false);
    float currentScore;

    // Perform all RANSAC iterations and save the solution with highest score
    for(int it=0; itscore)
        {
            F21 = F21i.clone();
            vbMatchesInliers = vbCurrentInliers;
            score = currentScore;
        }
    }
}

// |x'|     | h1 h2 h3 ||x|
// |y'| = a | h4 h5 h6 ||y|  简写: x' = a H x, a为一个尺度因子
// |1 |     | h7 h8 h9 ||1|
// 使用DLT(direct linear tranform)求解该模型
// x' = a H x 
// ---> (x') 叉乘 (H x)  = 0
// ---> Ah = 0
// A = | 0  0  0 -x -y -1 xy' yy' y'|  h = | h1 h2 h3 h4 h5 h6 h7 h8 h9 |
//     |-x -y -1  0  0  0 xx' yx' x'|
// 通过SVD求解Ah = 0,A'A最小特征值对应的特征向量即为解

/**
 * @brief 从特征点匹配求homography(normalized DLT)
 * 
 * @param  vP1 归一化后的点, in reference frame
 * @param  vP2 归一化后的点, in current frame
 * @return     单应矩阵
 * @see        Multiple View Geometry in Computer Vision - Algorithm 4.2 p109
 */
cv::Mat Initializer::ComputeH21(const vector &vP1, const vector &vP2)
{
    const int N = vP1.size();

    cv::Mat A(2*N,9,CV_32F); // 2N*9

    for(int i=0; i(2*i,0) = 0.0;
        A.at(2*i,1) = 0.0;
        A.at(2*i,2) = 0.0;
        A.at(2*i,3) = -u1;
        A.at(2*i,4) = -v1;
        A.at(2*i,5) = -1;
        A.at(2*i,6) = v2*u1;
        A.at(2*i,7) = v2*v1;
        A.at(2*i,8) = v2;

        A.at(2*i+1,0) = u1;
        A.at(2*i+1,1) = v1;
        A.at(2*i+1,2) = 1;
        A.at(2*i+1,3) = 0.0;
        A.at(2*i+1,4) = 0.0;
        A.at(2*i+1,5) = 0.0;
        A.at(2*i+1,6) = -u2*u1;
        A.at(2*i+1,7) = -u2*v1;
        A.at(2*i+1,8) = -u2;

    }

    cv::Mat u,w,vt;

    cv::SVDecomp(A,w,u,vt,cv::SVD::MODIFY_A | cv::SVD::FULL_UV);

    return vt.row(8).reshape(0, 3); // v的最后一列
}

// x'Fx = 0 整理可得:Af = 0
// A = | x'x x'y x' y'x y'y y' x y 1 |, f = | f1 f2 f3 f4 f5 f6 f7 f8 f9 |
// 通过SVD求解Af = 0,A'A最小特征值对应的特征向量即为解

/**
 * @brief 从特征点匹配求fundamental matrix(normalized 8点法)
 * @param  vP1 归一化后的点, in reference frame
 * @param  vP2 归一化后的点, in current frame
 * @return     基础矩阵
 * @see        Multiple View Geometry in Computer Vision - Algorithm 11.1 p282 (中文版 p191)
 */
cv::Mat Initializer::ComputeF21(const vector &vP1,const vector &vP2)
{
    const int N = vP1.size();

    cv::Mat A(N,9,CV_32F); // N*9

    for(int i=0; i(i,0) = u2*u1;
        A.at(i,1) = u2*v1;
        A.at(i,2) = u2;
        A.at(i,3) = v2*u1;
        A.at(i,4) = v2*v1;
        A.at(i,5) = v2;
        A.at(i,6) = u1;
        A.at(i,7) = v1;
        A.at(i,8) = 1;
    }

    cv::Mat u,w,vt;

    cv::SVDecomp(A,w,u,vt,cv::SVD::MODIFY_A | cv::SVD::FULL_UV);

    cv::Mat Fpre = vt.row(8).reshape(0, 3); // v的最后一列

    cv::SVDecomp(Fpre,w,u,vt,cv::SVD::MODIFY_A | cv::SVD::FULL_UV);

    w.at(2)=0; // 秩2约束,将第3个奇异值设为0

    return  u*cv::Mat::diag(w)*vt;
}

/**
 * @brief 对给定的homography matrix打分
 * 
 * @see
 * - Author's paper - IV. AUTOMATIC MAP INITIALIZATION (2)
 * - Multiple View Geometry in Computer Vision - symmetric transfer errors: 4.2.2 Geometric distance
 * - Multiple View Geometry in Computer Vision - model selection 4.7.1 RANSAC
 */
float Initializer::CheckHomography(const cv::Mat &H21, const cv::Mat &H12, vector &vbMatchesInliers, float sigma)
{   
    const int N = mvMatches12.size();

    // |h11 h12 h13|
    // |h21 h22 h23|
    // |h31 h32 h33|
    const float h11 = H21.at(0,0);
    const float h12 = H21.at(0,1);
    const float h13 = H21.at(0,2);
    const float h21 = H21.at(1,0);
    const float h22 = H21.at(1,1);
    const float h23 = H21.at(1,2);
    const float h31 = H21.at(2,0);
    const float h32 = H21.at(2,1);
    const float h33 = H21.at(2,2);

    // |h11inv h12inv h13inv|
    // |h21inv h22inv h23inv|
    // |h31inv h32inv h33inv|
    const float h11inv = H12.at(0,0);
    const float h12inv = H12.at(0,1);
    const float h13inv = H12.at(0,2);
    const float h21inv = H12.at(1,0);
    const float h22inv = H12.at(1,1);
    const float h23inv = H12.at(1,2);
    const float h31inv = H12.at(2,0);
    const float h32inv = H12.at(2,1);
    const float h33inv = H12.at(2,2);

    vbMatchesInliers.resize(N);

    float score = 0;

    // 基于卡方检验计算出的阈值(假设测量有一个像素的偏差)
    const float th = 5.991;

    //信息矩阵,方差平方的倒数
    const float invSigmaSquare = 1.0/(sigma*sigma);

    // N对特征匹配点
    for(int i=0; ith)
            bIn = false;
        else
            score += th - chiSquare1;

        // Reprojection error in second image
        // x1in2 = H21*x1
        // 将图像1中的特征点单应到图像2中
        const float w1in2inv = 1.0/(h31*u1+h32*v1+h33);
        const float u1in2 = (h11*u1+h12*v1+h13)*w1in2inv;
        const float v1in2 = (h21*u1+h22*v1+h23)*w1in2inv;

        const float squareDist2 = (u2-u1in2)*(u2-u1in2)+(v2-v1in2)*(v2-v1in2);

        const float chiSquare2 = squareDist2*invSigmaSquare;

        if(chiSquare2>th)
            bIn = false;
        else
            score += th - chiSquare2;

        if(bIn)
            vbMatchesInliers[i]=true;
        else
            vbMatchesInliers[i]=false;
    }

    return score;
}

/**
 * @brief 对给定的fundamental matrix打分
 * 
 * @see
 * - Author's paper - IV. AUTOMATIC MAP INITIALIZATION (2)
 * - Multiple View Geometry in Computer Vision - symmetric transfer errors: 4.2.2 Geometric distance
 * - Multiple View Geometry in Computer Vision - model selection 4.7.1 RANSAC
 */
float Initializer::CheckFundamental(const cv::Mat &F21, vector &vbMatchesInliers, float sigma)
{
    const int N = mvMatches12.size();

    const float f11 = F21.at(0,0);
    const float f12 = F21.at(0,1);
    const float f13 = F21.at(0,2);
    const float f21 = F21.at(1,0);
    const float f22 = F21.at(1,1);
    const float f23 = F21.at(1,2);
    const float f31 = F21.at(2,0);
    const float f32 = F21.at(2,1);
    const float f33 = F21.at(2,2);

    vbMatchesInliers.resize(N);

    float score = 0;

    // 基于卡方检验计算出的阈值(假设测量有一个像素的偏差)
    const float th = 3.841;
    const float thScore = 5.991;

    const float invSigmaSquare = 1.0/(sigma*sigma);

    for(int i=0; ith)
            bIn = false;
        else
            score += thScore - chiSquare1;

        // Reprojection error in second image
        // l1 =x2tF21=(a1,b1,c1)

        const float a1 = f11*u2+f21*v2+f31;
        const float b1 = f12*u2+f22*v2+f32;
        const float c1 = f13*u2+f23*v2+f33;

        const float num1 = a1*u1+b1*v1+c1;

        const float squareDist2 = num1*num1/(a1*a1+b1*b1);

        const float chiSquare2 = squareDist2*invSigmaSquare;

        if(chiSquare2>th)
            bIn = false;
        else
            score += thScore - chiSquare2;

        if(bIn)
            vbMatchesInliers[i]=true;
        else
            vbMatchesInliers[i]=false;
    }

    return score;
}


//                          |0 -1  0|
// E = U Sigma V'   let W = |1  0  0|
//                          |0  0  1|
// 得到4个解 E = [R|t]
// R1 = UWV' R2 = UW'V' t1 = U3 t2 = -U3

/**
 * @brief 从F恢复R t
 * 
 * 度量重构
 * 1. 由Fundamental矩阵结合相机内参K,得到Essential矩阵: \f$ E = k'^T F k \f$
 * 2. SVD分解得到R t
 * 3. 进行cheirality check, 从四个解中找出最合适的解
 * 
 * @see Multiple View Geometry in Computer Vision - Result 9.19 p259
 */
bool Initializer::ReconstructF(vector &vbMatchesInliers, cv::Mat &F21, cv::Mat &K,
                            cv::Mat &R21, cv::Mat &t21, vector &vP3D, vector &vbTriangulated, float minParallax, int minTriangulated)
{
    int N=0;
    for(size_t i=0, iend = vbMatchesInliers.size() ; i vP3D1, vP3D2, vP3D3, vP3D4;
    vector vbTriangulated1,vbTriangulated2,vbTriangulated3, vbTriangulated4;
    float parallax1,parallax2, parallax3, parallax4;

    int nGood1 = CheckRT(R1,t1,mvKeys1,mvKeys2,mvMatches12,vbMatchesInliers,K, vP3D1, 4.0*mSigma2, vbTriangulated1, parallax1);
    int nGood2 = CheckRT(R2,t1,mvKeys1,mvKeys2,mvMatches12,vbMatchesInliers,K, vP3D2, 4.0*mSigma2, vbTriangulated2, parallax2);
    int nGood3 = CheckRT(R1,t2,mvKeys1,mvKeys2,mvMatches12,vbMatchesInliers,K, vP3D3, 4.0*mSigma2, vbTriangulated3, parallax3);
    int nGood4 = CheckRT(R2,t2,mvKeys1,mvKeys2,mvMatches12,vbMatchesInliers,K, vP3D4, 4.0*mSigma2, vbTriangulated4, parallax4);

    int maxGood = max(nGood1,max(nGood2,max(nGood3,nGood4)));

    R21 = cv::Mat();
    t21 = cv::Mat();

    // minTriangulated为可以三角化恢复三维点的个数
    int nMinGood = max(static_cast(0.9*N),minTriangulated);

    int nsimilar = 0;
    if(nGood1>0.7*maxGood)
        nsimilar++;
    if(nGood2>0.7*maxGood)
        nsimilar++;
    if(nGood3>0.7*maxGood)
        nsimilar++;
    if(nGood4>0.7*maxGood)
        nsimilar++;

    // If there is not a clear winner or not enough triangulated points reject initialization
    // 四个结果中如果没有明显的最优结果,则返回失败
    if(maxGood1)
    {
        return false;
    }

    // If best reconstruction has enough parallax initialize
    // 比较大的视差角
    if(maxGood==nGood1)
    {
        if(parallax1>minParallax)
        {
            vP3D = vP3D1;
            vbTriangulated = vbTriangulated1;

            R1.copyTo(R21);
            t1.copyTo(t21);
            return true;
        }
    }else if(maxGood==nGood2)
    {
        if(parallax2>minParallax)
        {
            vP3D = vP3D2;
            vbTriangulated = vbTriangulated2;

            R2.copyTo(R21);
            t1.copyTo(t21);
            return true;
        }
    }else if(maxGood==nGood3)
    {
        if(parallax3>minParallax)
        {
            vP3D = vP3D3;
            vbTriangulated = vbTriangulated3;

            R1.copyTo(R21);
            t2.copyTo(t21);
            return true;
        }
    }else if(maxGood==nGood4)
    {
        if(parallax4>minParallax)
        {
            vP3D = vP3D4;
            vbTriangulated = vbTriangulated4;

            R2.copyTo(R21);
            t2.copyTo(t21);
            return true;
        }
    }

    return false;
}

// H矩阵分解常见有两种方法:Faugeras SVD-based decomposition 和 Zhang SVD-based decomposition
// 参考文献:Motion and structure from motion in a piecewise plannar environment
// 这篇参考文献和下面的代码使用了Faugeras SVD-based decomposition算法

/**
 * @brief 从H恢复R t
 *
 * @see
 * - Faugeras et al, Motion and structure from motion in a piecewise planar environment. International Journal of Pattern Recognition and Artificial Intelligence, 1988.
 * - Deeper understanding of the homography decomposition for vision-based control
 */
bool Initializer::ReconstructH(vector &vbMatchesInliers, cv::Mat &H21, cv::Mat &K,
                      cv::Mat &R21, cv::Mat &t21, vector &vP3D, vector &vbTriangulated, float minParallax, int minTriangulated)
{
    int N=0;
    for(size_t i=0, iend = vbMatchesInliers.size() ; i(0);
    float d2 = w.at(1);
    float d3 = w.at(2);

    // SVD分解的正常情况是特征值降序排列
    if(d1/d2<1.00001 || d2/d3<1.00001)
    {
        return false;
    }

    vector vR, vt, vn;
    vR.reserve(8);
    vt.reserve(8);
    vn.reserve(8);

    //n'=[x1 0 x3] 4 posibilities e1=e3=1, e1=1 e3=-1, e1=-1 e3=1, e1=e3=-1
    // 法向量n'= [x1 0 x3] 对应ppt的公式17
    float aux1 = sqrt((d1*d1-d2*d2)/(d1*d1-d3*d3));
    float aux3 = sqrt((d2*d2-d3*d3)/(d1*d1-d3*d3));
    float x1[] = {aux1,aux1,-aux1,-aux1};
    float x3[] = {aux3,-aux3,aux3,-aux3};

    //case d'=d2
    // 计算ppt中公式19
    float aux_stheta = sqrt((d1*d1-d2*d2)*(d2*d2-d3*d3))/((d1+d3)*d2);

    float ctheta = (d2*d2+d1*d3)/((d1+d3)*d2);
    float stheta[] = {aux_stheta, -aux_stheta, -aux_stheta, aux_stheta};

    // 计算旋转矩阵 R‘,计算ppt中公式18
    //      | ctheta      0   -aux_stheta|       | aux1|
    // Rp = |    0        1       0      |  tp = |  0  |
    //      | aux_stheta  0    ctheta    |       |-aux3|

    //      | ctheta      0    aux_stheta|       | aux1|
    // Rp = |    0        1       0      |  tp = |  0  |
    //      |-aux_stheta  0    ctheta    |       | aux3|

    //      | ctheta      0    aux_stheta|       |-aux1|
    // Rp = |    0        1       0      |  tp = |  0  |
    //      |-aux_stheta  0    ctheta    |       |-aux3|

    //      | ctheta      0   -aux_stheta|       |-aux1|
    // Rp = |    0        1       0      |  tp = |  0  |
    //      | aux_stheta  0    ctheta    |       | aux3|
    for(int i=0; i<4; i++)
    {
        cv::Mat Rp=cv::Mat::eye(3,3,CV_32F);
        Rp.at(0,0)=ctheta;
        Rp.at(0,2)=-stheta[i];
        Rp.at(2,0)=stheta[i];
        Rp.at(2,2)=ctheta;

        cv::Mat R = s*U*Rp*Vt;
        vR.push_back(R);

        cv::Mat tp(3,1,CV_32F);
        tp.at(0)=x1[i];
        tp.at(1)=0;
        tp.at(2)=-x3[i];
        tp*=d1-d3;

        // 这里虽然对t有归一化,并没有决定单目整个SLAM过程的尺度
        // 因为CreateInitialMapMonocular函数对3D点深度会缩放,然后反过来对 t 有改变
        cv::Mat t = U*tp;
        vt.push_back(t/cv::norm(t));

        cv::Mat np(3,1,CV_32F);
        np.at(0)=x1[i];
        np.at(1)=0;
        np.at(2)=x3[i];

        cv::Mat n = V*np;
        if(n.at(2)<0)
            n=-n;
        vn.push_back(n);
    }

    //case d'=-d2
    // 计算ppt中公式22
    float aux_sphi = sqrt((d1*d1-d2*d2)*(d2*d2-d3*d3))/((d1-d3)*d2);

    float cphi = (d1*d3-d2*d2)/((d1-d3)*d2);
    float sphi[] = {aux_sphi, -aux_sphi, -aux_sphi, aux_sphi};

    // 计算旋转矩阵 R‘,计算ppt中公式21
    for(int i=0; i<4; i++)
    {
        cv::Mat Rp=cv::Mat::eye(3,3,CV_32F);
        Rp.at(0,0)=cphi;
        Rp.at(0,2)=sphi[i];
        Rp.at(1,1)=-1;
        Rp.at(2,0)=sphi[i];
        Rp.at(2,2)=-cphi;

        cv::Mat R = s*U*Rp*Vt;
        vR.push_back(R);

        cv::Mat tp(3,1,CV_32F);
        tp.at(0)=x1[i];
        tp.at(1)=0;
        tp.at(2)=x3[i];
        tp*=d1+d3;

        cv::Mat t = U*tp;
        vt.push_back(t/cv::norm(t));

        cv::Mat np(3,1,CV_32F);
        np.at(0)=x1[i];
        np.at(1)=0;
        np.at(2)=x3[i];

        cv::Mat n = V*np;
        if(n.at(2)<0)
            n=-n;
        vn.push_back(n);
    }


    int bestGood = 0;
    int secondBestGood = 0;    
    int bestSolutionIdx = -1;
    float bestParallax = -1;
    vector bestP3D;
    vector bestTriangulated;

    // Instead of applying the visibility constraints proposed in the Faugeras' paper (which could fail for points seen with low parallax)
    // We reconstruct all hypotheses and check in terms of triangulated points and parallax
    // d'=d2和d'=-d2分别对应8组(R t)
    for(size_t i=0; i<8; i++)
    {
        float parallaxi;
        vector vP3Di;
        vector vbTriangulatedi;
        int nGood = CheckRT(vR[i],vt[i],mvKeys1,mvKeys2,mvMatches12,vbMatchesInliers,K,vP3Di, 4.0*mSigma2, vbTriangulatedi, parallaxi);

        // 保留最优的和次优的
        if(nGood>bestGood)
        {
            secondBestGood = bestGood;
            bestGood = nGood;
            bestSolutionIdx = i;
            bestParallax = parallaxi;
            bestP3D = vP3Di;
            bestTriangulated = vbTriangulatedi;
        }
        else if(nGood>secondBestGood)
        {
            secondBestGood = nGood;
        }
    }


    if(secondBestGood<0.75*bestGood && bestParallax>=minParallax && bestGood>minTriangulated && bestGood>0.9*N)
    {
        vR[bestSolutionIdx].copyTo(R21);
        vt[bestSolutionIdx].copyTo(t21);
        vP3D = bestP3D;
        vbTriangulated = bestTriangulated;

        return true;
    }

    return false;
}


// Trianularization: 已知匹配特征点对{x x'} 和 各自相机矩阵{P P'}, 估计三维点 X
// x' = P'X  x = PX
// 它们都属于 x = aPX模型
//                         |X|
// |x|     |p1 p2  p3  p4 ||Y|     |x|    |--p0--||.|
// |y| = a |p5 p6  p7  p8 ||Z| ===>|y| = a|--p1--||X|
// |z|     |p9 p10 p11 p12||1|     |z|    |--p2--||.|
// 采用DLT的方法:x叉乘PX = 0
// |yp2 -  p1|     |0|
// |p0 -  xp2| X = |0|
// |xp1 - yp0|     |0|
// 两个点:
// |yp2   -  p1  |     |0|
// |p0    -  xp2 | X = |0| ===> AX = 0
// |y'p2' -  p1' |     |0|
// |p0'   - x'p2'|     |0|
// 变成程序中的形式:
// |xp2  - p0 |     |0|
// |yp2  - p1 | X = |0| ===> AX = 0
// |x'p2'- p0'|     |0|
// |y'p2'- p1'|     |0|

/**
 * @brief 给定投影矩阵P1,P2和图像上的点kp1,kp2,从而恢复3D坐标
 *
 * @param kp1 特征点, in reference frame
 * @param kp2 特征点, in current frame
 * @param P1  投影矩阵P1
 * @param P2  投影矩阵P2
 * @param x3D 三维点
 * @see       Multiple View Geometry in Computer Vision - 12.2 Linear triangulation methods p312
 */
void Initializer::Triangulate(const cv::KeyPoint &kp1, const cv::KeyPoint &kp2, const cv::Mat &P1, const cv::Mat &P2, cv::Mat &x3D)
{
    // 在DecomposeE函数和ReconstructH函数中对t有归一化
    // 这里三角化过程中恢复的3D点深度取决于 t 的尺度,
    // 但是这里恢复的3D点并没有决定单目整个SLAM过程的尺度
    // 因为CreateInitialMapMonocular函数对3D点深度会缩放,然后反过来对 t 有改变

    cv::Mat A(4,4,CV_32F);

    A.row(0) = kp1.pt.x*P1.row(2)-P1.row(0);
    A.row(1) = kp1.pt.y*P1.row(2)-P1.row(1);
    A.row(2) = kp2.pt.x*P2.row(2)-P2.row(0);
    A.row(3) = kp2.pt.y*P2.row(2)-P2.row(1);

    cv::Mat u,w,vt;
    cv::SVD::compute(A,w,u,vt,cv::SVD::MODIFY_A| cv::SVD::FULL_UV);
    x3D = vt.row(3).t();
    x3D = x3D.rowRange(0,3)/x3D.at(3);
}

/**
 * @brief 归一化特征点到同一尺度(作为normalize DLT的输入)
 *
 * [x' y' 1]' = T * [x y 1]' \n
 * 归一化后x', y'的均值为0,sum(abs(x_i'-0))=1,sum(abs((y_i'-0))=1
 * 
 * @param vKeys             特征点在图像上的坐标
 * @param vNormalizedPoints 特征点归一化后的坐标
 * @param T                 将特征点归一化的矩阵
 */
void Initializer::Normalize(const vector &vKeys, vector &vNormalizedPoints, cv::Mat &T)
{
    float meanX = 0;
    float meanY = 0;
    const int N = vKeys.size();

    vNormalizedPoints.resize(N);

    for(int i=0; i(0,0) = sX;
    T.at(1,1) = sY;
    T.at(0,2) = -meanX*sX;
    T.at(1,2) = -meanY*sY;
}

/**
 * @brief 进行cheirality check,从而进一步找出F分解后最合适的解
 */
int Initializer::CheckRT(const cv::Mat &R, const cv::Mat &t, const vector &vKeys1, const vector &vKeys2,
                       const vector &vMatches12, vector &vbMatchesInliers,
                       const cv::Mat &K, vector &vP3D, float th2, vector &vbGood, float ¶llax)
{
    // Calibration parameters
    const float fx = K.at(0,0);
    const float fy = K.at(1,1);
    const float cx = K.at(0,2);
    const float cy = K.at(1,2);

    vbGood = vector(vKeys1.size(),false);
    vP3D.resize(vKeys1.size());

    vector vCosParallax;
    vCosParallax.reserve(vKeys1.size());

    // Camera 1 Projection Matrix K[I|0]
    // 步骤1:得到一个相机的投影矩阵
    // 以第一个相机的光心作为世界坐标系
    cv::Mat P1(3,4,CV_32F,cv::Scalar(0));
    K.copyTo(P1.rowRange(0,3).colRange(0,3));
    // 第一个相机的光心在世界坐标系下的坐标
    cv::Mat O1 = cv::Mat::zeros(3,1,CV_32F);

    // Camera 2 Projection Matrix K[R|t]
    // 步骤2:得到第二个相机的投影矩阵
    cv::Mat P2(3,4,CV_32F);
    R.copyTo(P2.rowRange(0,3).colRange(0,3));
    t.copyTo(P2.rowRange(0,3).col(3));
    P2 = K*P2;
    // 第二个相机的光心在世界坐标系下的坐标
    cv::Mat O2 = -R.t()*t;

    int nGood=0;

    for(size_t i=0, iend=vMatches12.size();i(0)) || !isfinite(p3dC1.at(1)) || !isfinite(p3dC1.at(2)))
        {
            vbGood[vMatches12[i].first]=false;
            continue;
        }

        // Check parallax
        // 步骤4:计算视差角余弦值
        cv::Mat normal1 = p3dC1 - O1;
        float dist1 = cv::norm(normal1);

        cv::Mat normal2 = p3dC1 - O2;
        float dist2 = cv::norm(normal2);

        float cosParallax = normal1.dot(normal2)/(dist1*dist2);

        // 步骤5:判断3D点是否在两个摄像头前方

        // Check depth in front of first camera (only if enough parallax, as "infinite" points can easily go to negative depth)
        // 步骤5.1:3D点深度为负,在第一个摄像头后方,淘汰
        if(p3dC1.at(2)<=0 && cosParallax<0.99998)
            continue;

        // Check depth in front of second camera (only if enough parallax, as "infinite" points can easily go to negative depth)
        // 步骤5.2:3D点深度为负,在第二个摄像头后方,淘汰
        cv::Mat p3dC2 = R*p3dC1+t;

        if(p3dC2.at(2)<=0 && cosParallax<0.99998)
            continue;

        // 步骤6:计算重投影误差

        // Check reprojection error in first image
        // 计算3D点在第一个图像上的投影误差
        float im1x, im1y;
        float invZ1 = 1.0/p3dC1.at(2);
        im1x = fx*p3dC1.at(0)*invZ1+cx;
        im1y = fy*p3dC1.at(1)*invZ1+cy;

        float squareError1 = (im1x-kp1.pt.x)*(im1x-kp1.pt.x)+(im1y-kp1.pt.y)*(im1y-kp1.pt.y);

        // 步骤6.1:重投影误差太大,跳过淘汰
        // 一般视差角比较小时重投影误差比较大
        if(squareError1>th2)
            continue;

        // Check reprojection error in second image
        // 计算3D点在第二个图像上的投影误差
        float im2x, im2y;
        float invZ2 = 1.0/p3dC2.at(2);
        im2x = fx*p3dC2.at(0)*invZ2+cx;
        im2y = fy*p3dC2.at(1)*invZ2+cy;

        float squareError2 = (im2x-kp2.pt.x)*(im2x-kp2.pt.x)+(im2y-kp2.pt.y)*(im2y-kp2.pt.y);

        // 步骤6.2:重投影误差太大,跳过淘汰
        // 一般视差角比较小时重投影误差比较大
        if(squareError2>th2)
            continue;

        // 步骤7:统计经过检验的3D点个数,记录3D点视差角
        vCosParallax.push_back(cosParallax);
        vP3D[vMatches12[i].first] = cv::Point3f(p3dC1.at(0),p3dC1.at(1),p3dC1.at(2));
        nGood++;

        if(cosParallax<0.99998)
            vbGood[vMatches12[i].first]=true;
    }

    // 步骤8:得到3D点中较大的视差角
    if(nGood>0)
    {
        // 从小到大排序
        sort(vCosParallax.begin(),vCosParallax.end());

        // trick! 排序后并没有取最大的视差角
        // 取一个较大的视差角
        size_t idx = min(50,int(vCosParallax.size()-1));
        parallax = acos(vCosParallax[idx])*180/CV_PI;
    }
    else
        parallax=0;

    return nGood;
}

/**
 * @brief 分解Essential矩阵
 * 
 * F矩阵通过结合内参可以得到Essential矩阵,分解E矩阵将得到4组解 \n
 * 这4组解分别为[R1,t],[R1,-t],[R2,t],[R2,-t]
 * @param E  Essential Matrix
 * @param R1 Rotation Matrix 1
 * @param R2 Rotation Matrix 2
 * @param t  Translation
 * @see Multiple View Geometry in Computer Vision - Result 9.19 p259
 */
void Initializer::DecomposeE(const cv::Mat &E, cv::Mat &R1, cv::Mat &R2, cv::Mat &t)
{
    cv::Mat u,w,vt;
    cv::SVD::compute(E,w,u,vt);

    // 对 t 有归一化,但是这个地方并没有决定单目整个SLAM过程的尺度
    // 因为CreateInitialMapMonocular函数对3D点深度会缩放,然后反过来对 t 有改变
    u.col(2).copyTo(t);
    t=t/cv::norm(t);

    cv::Mat W(3,3,CV_32F,cv::Scalar(0));
    W.at(0,1)=-1;
    W.at(1,0)=1;
    W.at(2,2)=1;

    R1 = u*W*vt;
    if(cv::determinant(R1)<0) // 旋转矩阵有行列式为1的约束
        R1=-R1;

    R2 = u*W.t()*vt;
    if(cv::determinant(R2)<0)
        R2=-R2;
}

} //namespace ORB_SLAM

 

你可能感兴趣的:(ORBSLAM2,VSLAM)