- 遗传进化算法进行高效特征选择
广东数字化转型
算法人工智能
在构建机器学习模型时,特征选择是一个关键的预处理步骤。使用全部特征往往会导致过拟合、增加计算复杂度等问题。因此,我们需要从原始特征集中选择一个最优子集,以提高模型的泛化性能和效率。特征选择的目标是找到一个二元掩码向量,对应每个特征的保留(1)或剔除(0)。例如,对于10个特征,这个掩码向量可能是[1,0,1,1,0,0,1,0,1,0]。我们需要通过某种优化方法,寻找一个使目标函数(如模型的贝叶斯
- 遗传算法与深度学习实战(7)——使用遗传算法解决N皇后问题
盼小辉丶
遗传算法与深度学习实战深度学习DEAP遗传算法
遗传算法与深度学习实战(7)——使用遗传算法解决N皇后问题0.前言1.N皇后问题2.解的表示3.遗传算法解决N皇后问题小结系列链接0.前言进化算法(EvolutionaryAlgorithm,EA)和遗传算法(GeneticAlgorithms,GA)已成功解决了许多复杂的设计和布局问题,部分原因是它们采用了受控随机元素的搜索。这通常使得使用EA或GA设计的系统能够超越我们的理解进行创新。在本节中
- 利用多目标粒子群优化(MOPSO)算法对全加器中的晶体管大小进行重新调整以达到功率优化:详细步骤与Python实现
快撑死的鱼
python算法解析算法python开发语言
简介:随着技术的不断进步,微电子行业始终追求在保持性能的同时降低功率消耗。全加器作为数字电路中的基本元素,其功率优化显得尤为关键。本文将详细介绍如何使用一种称为多目标粒子群优化(MOPSO)的进化算法,重新调整晶体管的大小,以优化全加器中的功率。此外,我们还将提供Python代码实现,供读者参考和使用。具体的项目实现过程,我们已经准备了一个完整的项目文件,您可以下载以获取更多细节。1.多目标粒子群
- MATLAB:差分进化算法(Differential Evolution Algorithm,DE)求解基于移动边缘计算的任务卸载与资源调度(提供MATLAB代码)
优化算法MATLAB与Python
优化算法MATLABmatlab算法边缘计算人工智能开发语言
一、优化模型介绍移动边缘计算中的计算卸载是一种将计算任务从设备卸载到边缘服务器的技术。它可以将计算量大的任务分配给计算资源充足的代理服务器进行处理,从而减轻设备的计算负担,延长设备的电池寿命,并满足业务时延需求。计算卸载的过程一般包括以下几个步骤:任务划分:将计算任务划分为多个子任务,以便在边缘服务器上并行处理。任务调度:根据任务的特性和边缘服务器的资源情况,选择合适的边缘服务器来执行任务。数据传
- 多目标优化(Python):多目标粒子群优化算法(MOPSO)求解ZDT1、ZDT2、ZDT3、ZDT4、ZDT6(提供Python代码)
优化算法MATLAB与Python
Python优化算法python算法开发语言人工智能强化学习
一、多目标粒子群优化算法多目标粒子群优化算法(MOPSO)是一种用于解决多目标优化问题的进化算法。它基于粒子群优化算法(PSO),通过引入多个目标函数和非支配排序来处理多目标问题。MOPSO的基本思想是将问题转化为在多维搜索空间中寻找一组最优解的问题。每个解被称为一个粒子,它在搜索空间中移动,并根据自身的经验和群体的经验进行调整。粒子的位置表示解的候选解,速度表示解的搜索方向和步长。MOPSO的算
- 遗传算法 (Genetic Algorithm, GA) 详解与实现
安替-AnTi
机器学习GA遗传算法
文章目录基本思想基本概念基本操作算法基本步骤代码实现参考文献基本思想遗传算法(GeneticAlgorithm,GA)是一种进化算法,其基本原理是仿效生物界中的“物竞天择、适者生存”的演化法则,它最初由美国Michigan大学的J.Holland教授于1967年提出。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(
- 论文阅读:An interactive method for surrogate-assisted multi-objective evolutionary algorithms
还是要努力呀!
论文阅读论文阅读多目标优化交互式
Aninteractivemethodforsurrogate-assistedmulti-objectiveevolutionaryalgorithms辅助代理多目标进化算法的交互式方法作者:DinhNguyenDuc、LongNguyen、KienThaiTrung期刊:IEEEInternationalConferenceonKNOWLEDGEANDSYSTEMS、November2020D
- 粒子群优化算法简介
月下香
优化算法算法
粒子群优化算法简介01算法基本思想02算法步骤03重要参数与更新公式04编程实现05高级特性约束处理多目标优化混沌搜索群体拓扑结构自适应参数调整06总结重要参考文献粒子群优化(ParticleSwarmOptimization,简称PSO)是一种用于求解连续优化问题的进化算法,最早由Kennedy和Eberhart于1995年提出,灵感来源于鸟群觅食和鱼群觅食的行为。01算法基本思想PSO算法将待
- SHADE和SaDE跑CEC2017测试集
树洞优码
算法改进优化算法差分进化算法改进差分进化算法
SHADE和SaDE跑CEC2017测试集对比图,并分别连续运行30次并且输出最优值,最差值,平均值,标准差基于成功历史的参数自适应差分进化算法(SHADE)是经典的差分进化变体,该论文发表于2013年,性能非常有参考价值,可用于和其他算法进行对比试验,该算法尤其是在CEC测试集上有着优秀的表现,将此算法用作对比算法,可以极大增强试验的说服力。提升论文被录用的概率。参考文献:RyojiTanabe
- 自适应差分进化算法(SaDE)优化BP神经网络
树洞优码
算法神经网络人工智能自适应差分进化算法
自适应差分进化算法(SaDE)优化BP神经网络自适应差分进化算法(SaDE)可以用于优化神经网络中的参数,包括神经网络的权重和偏置。在优化BP神经网络中,SaDE可以帮助找到更好的权重和偏置的组合,以提高神经网络的性能。在BP神经网络中,SaDE主要用于调整网络的权重和偏置。通过SaDE算法,可以在权衡探索和利用的过程中,更有效地搜索到神经网络的参数组合,以降低误差、提高分类准确率或者加速网络收敛
- 基于差分进化算法的移动边缘计算的任务卸载与资源调度(提供MATLAB代码)
IT猿手
优化算法单目标应用MATLAB算法边缘计算matlab进化计算优化算法人工智能
一、优化模型介绍移动边缘计算的任务卸载与资源调度是指在移动设备和边缘服务器之间,将部分计算任务从移动设备卸载到边缘服务器,并合理分配资源以提高系统性能和降低能耗。在本文所研究的区块链网络中,优化的变量为:挖矿决策(即m)和资源分配(即p和f),目标函数是使所有矿工的总利润最大化。问题可以表述为:maxm,p,fFminer=∑i∈N′Fiminers.t.C1:mi∈{0,1},∀i∈NC2:p
- 基于差分进化算法(Differential Evolution Algorithm,DE)的移动边缘计算的任务卸载与资源调度研究(提供MATLAB代码)
IT猿手
优化算法MATLAB算法边缘计算matlab深度强化学习强化学习人工智能python
一、优化模型介绍移动边缘计算的任务卸载与资源调度是指在移动设备和边缘服务器之间,将部分计算任务从移动设备卸载到边缘服务器,并合理分配资源以提高系统性能和降低能耗。在本文所研究的区块链网络中,优化的变量为:挖矿决策(即m)和资源分配(即p和f),目标函数是使所有矿工的总利润最大化。问题可以表述为:maxm,p,fFminer=∑i∈N′Fiminers.t.C1:mi∈{0,1},∀i∈NC2:p
- 基于差分进化算法的移动边缘计算 (MEC) 的资源调度分配优化(提供MATLAB代码)
优化算法MATLAB与Python
MATLAB优化算法算法边缘计算matlab人工智能
一、优化模型简介在所研究的区块链网络中,优化的变量为:挖矿决策(即m)和资源分配(即p和f),目标函数是使所有矿工的总利润最大化。问题可以表述为:maxm,p,fFminer=∑i∈N′Fiminers.t.C1:mi∈{0,1},∀i∈NC2:pmin≤pi≤pmax,∀i∈N′C3:fmin≤fi≤fmax,∀i∈N′C4:∑i∈N′fi≤ftotalC5:FMSP≥0C6:Tit+
- 差分进化算法求解基于移动边缘计算 (MEC) 的无线区块链网络的联合挖矿决策和资源分配(提供MATLAB代码)
IT猿手
单目标应用优化算法算法边缘计算区块链matlab人工智能优化算法强化学习
一、优化模型介绍在所研究的区块链网络中,优化的变量为:挖矿决策(即m)和资源分配(即p和f),目标函数是使所有矿工的总利润最大化。问题可以表述为:maxm,p,fFminer=∑i∈N′Fiminers.t.C1:mi∈{0,1},∀i∈NC2:pmin≤pi≤pmax,∀i∈N′C3:fmin≤fi≤fmax,∀i∈N′C4:∑i∈N′fi≤ftotalC5:FMSP≥0C6:Tit+
- 思维训练营 笔记3
享受孤独的猫
九、选择:反馈最后会把你带到陷阱狐狸是精致的利己主义者,是反馈性学习的典范。反馈学习注意事项:1)从自己的经验中学习;2)模仿,向成功者学习;3)进化算法,物竞天择,适者生存。适应性学习的共同陷阱是短视,只注重眼前的机会和威胁,而忽略了未来的机会和威胁。适应性学习是从历史记录中学习,而不是从历史的所有可能中学习。它只能许锡已经发生的事情,而不能学习有可能但没有发生的事情。注定缺乏应对剧烈变化的想象
- 2024年美赛数学建模思路 - 案例:粒子群算法
建模君A
算法
文章目录1什么是粒子群算法?2举个例子3还是一个例子算法流程算法实现建模资料#0赛题思路(赛题出来以后第一时间在CSDN分享)https://blog.csdn.net/dc_sinor?type=blog1什么是粒子群算法?粒子群算法(ParticleSwarmOptimization,PSO)是一种模仿鸟群、鱼群觅食行为发展起来的一种进化算法。其概念简单易于编程实现且运行效率高、参数相对较少,
- 2024美赛数学建模思路 - 案例:粒子群算法
建模君Assistance
算法2024美赛美国大学生数学建模建模思路
文章目录1什么是粒子群算法?2举个例子3还是一个例子算法流程算法实现建模资料#0赛题思路(赛题出来以后第一时间在CSDN分享)https://blog.csdn.net/dc_sinor?type=blog1什么是粒子群算法?粒子群算法(ParticleSwarmOptimization,PSO)是一种模仿鸟群、鱼群觅食行为发展起来的一种进化算法。其概念简单易于编程实现且运行效率高、参数相对较少,
- 2024年美国大学生数学建模思路 - 案例:粒子群算法
m0_71450098
算法
文章目录1什么是粒子群算法?2举个例子3还是一个例子算法流程算法实现建模资料#0赛题思路(赛题出来以后第一时间在CSDN分享)https://blog.csdn.net/dc_sinor?type=blog1什么是粒子群算法?粒子群算法(ParticleSwarmOptimization,PSO)是一种模仿鸟群、鱼群觅食行为发展起来的一种进化算法。其概念简单易于编程实现且运行效率高、参数相对较少,
- Hardware-Aware-Transformers开源项目笔记
清风2022
NAStransformerNLP
文章目录Hardware-Aware-Transformers开源项目笔记开源项目背景知识nas进化算法进化算法代码示例开源项目EvolutionarySearch1生成延迟的数据集2训练延迟预测器3使延时约束运行搜索算法4.训练搜索得到的subTransformer5.根据重训练后的submodel得到BLEU精度值代码结构分析Hardware-Aware-Transformers开源项目笔记开
- 卢悦丹:对付拖延,算法告诉你需要成长思维
卢悦丹拖延症
战胜拖延找卢悦丹最近我思考进化和成长,原来是相通的,与你分享一下。1、所谓进化算法过去我的学习和工作,与算法接触很多,细细思考总结了一下,原来所有的算法都有一个最简单的逻辑,那就是积分和迭代。所有的智能学习算法,和大部分普通算法,都可以由这两个关键字搞定!下面我来为你具体分析一下。用算法解决任何一个问题,就是在解空间范围内,找到最优解,让目标函数取值最大。比如下图,我们的目标是三角形的地方。初始位
- CMA-ES 算法初探
UQI-LIUWJ
演化学习机器学习算法人工智能矩阵
1进化算法在学习最优模型参数的时候,梯度下降并不是唯一的选择。在我们不知道目标函数的精确解析或者不能直接计算梯度的情况下,进化算法是有效的。进化算法的灵感来源于自然选择,具有有利于生存的特征的个体可以世代生存,并将好的特性传给下一代;具有不利于生存的特正的个体则会被不断淘汰,最后减少甚至消失。进化是在选择过程中逐渐发生的,进化使得种群可以更好地适应环境。下面这张图可以很好地解释进化算法的想法,一开
- 【智能优化算法】协方差矩阵自适应进化算法CMAES附matlab代码
前程算法matlab屋
算法矩阵matlab线性代数开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。内容介绍智能优化算法在解决复杂问题和优化函数方面发挥着重要作用。其中,协方差矩阵自适应进化算法(CovarianceMatrixAdaptationEvolutionStrategy,简称CMA-ES)是一种高效的优化算法。本文将详细介绍CMA-ES算法
- 基于强化学习的机器人路径寻优
kk的blog;
机器人机器人
文章目录前言一、需要构建一个怎样的机器人?二、使用差分进化算法辨识逆运动学的解三、基于强化学习的机械臂末端运动四、代码五、总结前言提示:这里可以添加本文要记录的大概内容:记录以前上课时学习的一些知识本文需要掌握的一些前置知识:1.机器人的D-H建模2.机器人的正运动学3.机器人的逆运动学4.强化学习5.差分进化算法下面,我们围绕上述五点,进行详细的讲解。提示:以下是本篇文章正文内容,下面案例可供参
- ## 混沌大学——2019年度大课笔记
胡一凡_非暴教练
混沌大学——2019年度大课笔记【主题】哲科摇滚·点亮创新6月22日——科学点亮创新·达尔文进化论Part1:进化算法【关键词】生命、破界【开场白】创新发展:人口红利、互联网红利、全球化红利可能都将消失殆尽,未来是「创新红利」的时代。企业不创新是等死,而创新可能是‘找死’。1.学习的要点:上课时,除了听取吸收,更要去寻找到那些能Touch到你的‘草莓’,从而点悟自己的灵魂。2.为什么要谈生物学?因
- 【BP回归预测】基于差分进化算法优化BP神经网络实现数据预测附matlab代码
Matlab科研辅导帮
预测模型算法回归神经网络
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍1.概述BP神经网络是一种常用的前馈神经网络,具有强大的非线性映射能力,广泛应用于模式识别、数据预测等
- CEC2017(Python):六种算法(PSO、DBO、HHO、SSA、DE、HHO)求解CEC2017
优化算法MATLAB与Python
Python优化算法cec2017python算法开发语言
一、6种算法简介1、粒子群优化算法PSO2、蜣螂优化算法DBO3、哈里斯鹰优化算法HHO4、麻雀搜索算法SSA5、差分进化算法DE6、哈里斯鹰优化算法HHO二、CEC2017简介参考文献:[1]Awad,N.H.,Ali,M.Z.,Liang,J.J.,Qu,B.Y.,&Suganthan,P.N.(2016).“Problemdefinitionsandevaluationcriteriafor
- 131基于matlab的差分进化算法优化K均值聚类问题
顶呱呱程序
matlab工程应用matlab差分进化算法K均值聚类
基于matlab的差分进化算法优化K均值聚类问题,可调整K参数得到最佳聚类结果。输出聚类可视化图和优化迭代曲线。可替换自己的数据,程序已调通,可直接运行。131matlab差分进化算法K均值聚类(xiaohongshu.com)
- 手推差分进化算法(多目标函数)
Ling_Ze
算法算法python
importnumpyasnpimporttime#定义目标函数(这里以一个简单的二维函数为例)defobjective_function(x):returnx[0]**2+x[1]**2#差分进化算法defdifferential_evolution(objective_function,bounds,population_size=100,max_generations=50,crossove
- 经典算法-遗传算法的python实现
Alex_StarSky
GPT实战系列机器学习遗传算法经典算法pythonGeneticAlg遗传规划算法拟合算法生物进化算法
经典算法-遗传算法的python实现前言本文分享经典的算法:遗传算法受到生物进化理论启发,模拟生物种群的进化过程。遗传算法是一类基于生物进化理论的优化算法,通过模拟生物进化的过程,通过选择、交叉和变异等操作,不断优化解决问题。遗传规划算法(GeneticProgramming,简称GP)作为进化算法的一种,通过演化生成程序或模型来解决问题。使用Python语言实现一个遗传算法。LLM大模型相关文章
- 【路径规划】基于人工蜂群和进化算法的移动机器人路径规划附matlab代码
matlab科研助手
1简介研究机器人路径规划优化问题,机器人工作环境复杂,运动路径上存在许多障碍物.针对提高机器人安全导航性能问题,传统群智能算法存在早熟,搜索效率低等难题,难以获得全局最优路径.为了获得最优机器人运动路径,避免碰撞的发生,提出了一种人工蜂群算法的机器人路径规划方法.首先采用栅格法对机器人工作环境进行建模,然后机器人路径规划目标点作为蜜源,最后蜂群之间信息交换,协作搜索最优机器人运动路径.结果表明,人
- 关于旗正规则引擎中的MD5加密问题
何必如此
jspMD5规则加密
一般情况下,为了防止个人隐私的泄露,我们都会对用户登录密码进行加密,使数据库相应字段保存的是加密后的字符串,而非原始密码。
在旗正规则引擎中,通过外部调用,可以实现MD5的加密,具体步骤如下:
1.在对象库中选择外部调用,选择“com.flagleader.util.MD5”,在子选项中选择“com.flagleader.util.MD5.getMD5ofStr({arg1})”;
2.在规
- 【Spark101】Scala Promise/Future在Spark中的应用
bit1129
Promise
Promise和Future是Scala用于异步调用并实现结果汇集的并发原语,Scala的Future同JUC里面的Future接口含义相同,Promise理解起来就有些绕。等有时间了再仔细的研究下Promise和Future的语义以及应用场景,具体参见Scala在线文档:http://docs.scala-lang.org/sips/completed/futures-promises.html
- spark sql 访问hive数据的配置详解
daizj
spark sqlhivethriftserver
spark sql 能够通过thriftserver 访问hive数据,默认spark编译的版本是不支持访问hive,因为hive依赖比较多,因此打的包中不包含hive和thriftserver,因此需要自己下载源码进行编译,将hive,thriftserver打包进去才能够访问,详细配置步骤如下:
1、下载源码
2、下载Maven,并配置
此配置简单,就略过
- HTTP 协议通信
周凡杨
javahttpclienthttp通信
一:简介
HTTPCLIENT,通过JAVA基于HTTP协议进行点与点间的通信!
二: 代码举例
测试类:
import java
- java unix时间戳转换
g21121
java
把java时间戳转换成unix时间戳:
Timestamp appointTime=Timestamp.valueOf(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()))
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd hh:m
- web报表工具FineReport常用函数的用法总结(报表函数)
老A不折腾
web报表finereport总结
说明:本次总结中,凡是以tableName或viewName作为参数因子的。函数在调用的时候均按照先从私有数据源中查找,然后再从公有数据源中查找的顺序。
CLASS
CLASS(object):返回object对象的所属的类。
CNMONEY
CNMONEY(number,unit)返回人民币大写。
number:需要转换的数值型的数。
unit:单位,
- java jni调用c++ 代码 报错
墙头上一根草
javaC++jni
#
# A fatal error has been detected by the Java Runtime Environment:
#
# EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x00000000777c3290, pid=5632, tid=6656
#
# JRE version: Java(TM) SE Ru
- Spring中事件处理de小技巧
aijuans
springSpring 教程Spring 实例Spring 入门Spring3
Spring 中提供一些Aware相关de接口,BeanFactoryAware、 ApplicationContextAware、ResourceLoaderAware、ServletContextAware等等,其中最常用到de匙ApplicationContextAware.实现ApplicationContextAwaredeBean,在Bean被初始后,将会被注入 Applicati
- linux shell ls脚本样例
annan211
linuxlinux ls源码linux 源码
#! /bin/sh -
#查找输入文件的路径
#在查找路径下寻找一个或多个原始文件或文件模式
# 查找路径由特定的环境变量所定义
#标准输出所产生的结果 通常是查找路径下找到的每个文件的第一个实体的完整路径
# 或是filename :not found 的标准错误输出。
#如果文件没有找到 则退出码为0
#否则 即为找不到的文件个数
#语法 pathfind [--
- List,Set,Map遍历方式 (收集的资源,值得看一下)
百合不是茶
listsetMap遍历方式
List特点:元素有放入顺序,元素可重复
Map特点:元素按键值对存储,无放入顺序
Set特点:元素无放入顺序,元素不可重复(注意:元素虽然无放入顺序,但是元素在set中的位置是有该元素的HashCode决定的,其位置其实是固定的)
List接口有三个实现类:LinkedList,ArrayList,Vector
LinkedList:底层基于链表实现,链表内存是散乱的,每一个元素存储本身
- 解决SimpleDateFormat的线程不安全问题的方法
bijian1013
javathread线程安全
在Java项目中,我们通常会自己写一个DateUtil类,处理日期和字符串的转换,如下所示:
public class DateUtil01 {
private SimpleDateFormat dateformat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
public void format(Date d
- http请求测试实例(采用fastjson解析)
bijian1013
http测试
在实际开发中,我们经常会去做http请求的开发,下面则是如何请求的单元测试小实例,仅供参考。
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.httpclient.HttpClient;
import
- 【RPC框架Hessian三】Hessian 异常处理
bit1129
hessian
RPC异常处理概述
RPC异常处理指是,当客户端调用远端的服务,如果服务执行过程中发生异常,这个异常能否序列到客户端?
如果服务在执行过程中可能发生异常,那么在服务接口的声明中,就该声明该接口可能抛出的异常。
在Hessian中,服务器端发生异常,可以将异常信息从服务器端序列化到客户端,因为Exception本身是实现了Serializable的
- 【日志分析】日志分析工具
bit1129
日志分析
1. 网站日志实时分析工具 GoAccess
http://www.vpsee.com/2014/02/a-real-time-web-log-analyzer-goaccess/
2. 通过日志监控并收集 Java 应用程序性能数据(Perf4J)
http://www.ibm.com/developerworks/cn/java/j-lo-logforperf/
3.log.io
和
- nginx优化加强战斗力及遇到的坑解决
ronin47
nginx 优化
先说遇到个坑,第一个是负载问题,这个问题与架构有关,由于我设计架构多了两层,结果导致会话负载只转向一个。解决这样的问题思路有两个:一是改变负载策略,二是更改架构设计。
由于采用动静分离部署,而nginx又设计了静态,结果客户端去读nginx静态,访问量上来,页面加载很慢。解决:二者留其一。最好是保留apache服务器。
来以下优化:
- java-50-输入两棵二叉树A和B,判断树B是不是A的子结构
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/25411174201011445550396/
import ljn.help.*;
public class HasSubtree {
/**Q50.
* 输入两棵二叉树A和B,判断树B是不是A的子结构。
例如,下图中的两棵树A和B,由于A中有一部分子树的结构和B是一
- mongoDB 备份与恢复
开窍的石头
mongDB备份与恢复
Mongodb导出与导入
1: 导入/导出可以操作的是本地的mongodb服务器,也可以是远程的.
所以,都有如下通用选项:
-h host 主机
--port port 端口
-u username 用户名
-p passwd 密码
2: mongoexport 导出json格式的文件
- [网络与通讯]椭圆轨道计算的一些问题
comsci
网络
如果按照中国古代农历的历法,现在应该是某个季节的开始,但是由于农历历法是3000年前的天文观测数据,如果按照现在的天文学记录来进行修正的话,这个季节已经过去一段时间了。。。。。
也就是说,还要再等3000年。才有机会了,太阳系的行星的椭圆轨道受到外来天体的干扰,轨道次序发生了变
- 软件专利如何申请
cuiyadll
软件专利申请
软件技术可以申请软件著作权以保护软件源代码,也可以申请发明专利以保护软件流程中的步骤执行方式。专利保护的是软件解决问题的思想,而软件著作权保护的是软件代码(即软件思想的表达形式)。例如,离线传送文件,那发明专利保护是如何实现离线传送文件。基于相同的软件思想,但实现离线传送的程序代码有千千万万种,每种代码都可以享有各自的软件著作权。申请一个软件发明专利的代理费大概需要5000-8000申请发明专利可
- Android学习笔记
darrenzhu
android
1.启动一个AVD
2.命令行运行adb shell可连接到AVD,这也就是命令行客户端
3.如何启动一个程序
am start -n package name/.activityName
am start -n com.example.helloworld/.MainActivity
启动Android设置工具的命令如下所示:
# am start -
- apache虚拟机配置,本地多域名访问本地网站
dcj3sjt126com
apache
现在假定你有两个目录,一个存在于 /htdocs/a,另一个存在于 /htdocs/b 。
现在你想要在本地测试的时候访问 www.freeman.com 对应的目录是 /xampp/htdocs/freeman ,访问 www.duchengjiu.com 对应的目录是 /htdocs/duchengjiu。
1、首先修改C盘WINDOWS\system32\drivers\etc目录下的
- yii2 restful web服务[速率限制]
dcj3sjt126com
PHPyii2
速率限制
为防止滥用,你应该考虑增加速率限制到您的API。 例如,您可以限制每个用户的API的使用是在10分钟内最多100次的API调用。 如果一个用户同一个时间段内太多的请求被接收, 将返回响应状态代码 429 (这意味着过多的请求)。
要启用速率限制, [[yii\web\User::identityClass|user identity class]] 应该实现 [[yii\filter
- Hadoop2.5.2安装——单机模式
eksliang
hadoophadoop单机部署
转载请出自出处:http://eksliang.iteye.com/blog/2185414 一、概述
Hadoop有三种模式 单机模式、伪分布模式和完全分布模式,这里先简单介绍单机模式 ,默认情况下,Hadoop被配置成一个非分布式模式,独立运行JAVA进程,适合开始做调试工作。
二、下载地址
Hadoop 网址http:
- LoadMoreListView+SwipeRefreshLayout(分页下拉)基本结构
gundumw100
android
一切为了快速迭代
import java.util.ArrayList;
import org.json.JSONObject;
import android.animation.ObjectAnimator;
import android.os.Bundle;
import android.support.v4.widget.SwipeRefreshLayo
- 三道简单的前端HTML/CSS题目
ini
htmlWeb前端css题目
使用CSS为多个网页进行相同风格的布局和外观设置时,为了方便对这些网页进行修改,最好使用( )。http://hovertree.com/shortanswer/bjae/7bd72acca3206862.htm
在HTML中加入<table style=”color:red; font-size:10pt”>,此为( )。http://hovertree.com/s
- overrided方法编译错误
kane_xie
override
问题描述:
在实现类中的某一或某几个Override方法发生编译错误如下:
Name clash: The method put(String) of type XXXServiceImpl has the same erasure as put(String) of type XXXService but does not override it
当去掉@Over
- Java中使用代理IP获取网址内容(防IP被封,做数据爬虫)
mcj8089
免费代理IP代理IP数据爬虫JAVA设置代理IP爬虫封IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
Java语言有两种方式使用代理IP访问网址并获取内容,
方式一,设置System系统属性
// 设置代理IP
System.getProper
- Nodejs Express 报错之 listen EADDRINUSE
qiaolevip
每天进步一点点学习永无止境nodejs纵观千象
当你启动 nodejs服务报错:
>node app
Express server listening on port 80
events.js:85
throw er; // Unhandled 'error' event
^
Error: listen EADDRINUSE
at exports._errnoException (
- C++中三种new的用法
_荆棘鸟_
C++new
转载自:http://news.ccidnet.com/art/32855/20100713/2114025_1.html
作者: mt
其一是new operator,也叫new表达式;其二是operator new,也叫new操作符。这两个英文名称起的也太绝了,很容易搞混,那就记中文名称吧。new表达式比较常见,也最常用,例如:
string* ps = new string("
- Ruby深入研究笔记1
wudixiaotie
Ruby
module是可以定义private方法的
module MTest
def aaa
puts "aaa"
private_method
end
private
def private_method
puts "this is private_method"
end
end