- 【图论】欧拉回路
u小鬼
ACM23图论深度优先算法
前言你的qq密码是否在圆周率中出现?一个有意思的编码问题:假设密码是固定位数,设有nnn位,每位是数字0-9,那么这样最短的“圆周率”的长度是多少?或者说求一个最短的数字串定包含所有密码。理论一些定义:通过图中所有边恰好一次且行遍所有顶点的通路称为欧拉通路;通过图中所有边恰好一次且行遍所有顶点的回路称为欧拉回路;具有欧拉回路的无向图称为欧拉图;具有欧拉通路但不具有欧拉回路的无向图称为半欧拉图。求欧
- 1123. 铲雪车(欧拉回路)
Landing_on_Mars
#欧拉回路和欧拉路径图论
活动-AcWing随着白天越来越短夜晚越来越长,我们不得不考虑铲雪问题了。整个城市所有的道路都是双向车道,道路的两个方向均需要铲雪。因为城市预算的削减,整个城市只有1辆铲雪车。铲雪车只能把它开过的地方(车道)的雪铲干净,无论哪儿有雪,铲雪车都得从停放的地方出发,游历整个城市的街道。现在的问题是:最少要花多少时间去铲掉所有道路上的雪呢?输入格式输入数据的第1行表示铲雪车的停放坐标(x,y),x,y为
- 1184. 欧拉回路(欧拉回路,模板题)
Landing_on_Mars
#欧拉回路和欧拉路径图论
活动-AcWing给定一张图,请你找出欧拉回路,即在图中找一个环使得每条边都在环上出现恰好一次。输入格式第一行包含一个整数t,t∈{1,2},如果t=1,表示所给图为无向图,如果t=2,表示所给图为有向图。第二行包含两个整数n,m,表示图的结点数和边数。接下来m行中,第i行两个整数vi,ui,表示第i条边(从11开始编号)。如果t=1则表示vi到ui有一条无向边。如果t=2则表示vi到ui有一条有
- 算法题目题单——图论
kaiserqzyue
算法题目算法图论
简介本文为自己做的一部分图论题目,作为题单列出,持续更新。题单由题目链接和题解两部分组成,题解部分提供简洁题意,代码仓库:Kaiser-Yang/OJProblems。对于同一个一级标题下的题目,题目难度尽可能做到递增。搜索/BFS/DFSLuoguP3547[POI2013]CEN-PriceList题目链接:LuoguP3547[POI2013]CEN-PriceList题解:欧拉回路/欧拉通
- Luogu P6066 [USACO05JAN] Watchcow S 题解 欧拉回路
kaiserqzyue
算法题目c++算法图论
题目链接:LuoguP6066[USACO05JAN]WatchcowS欧拉回路题目描述:给定一张无向图,输出任意一条从一号结点出发的欧拉回路(欧拉回路指每条无向边来回经过且只经过一次),给定的图保证这样的欧拉回路存在。题解:只需要从一号结点开始使用Hierholzer算法进行遍历即可。对于一个存在欧拉回路或者欧拉通路的图Hierholzer算法的思想是一直在图中找环,每找到一个环就将这个环从图中
- 欧拉路 与 欧拉回路
Teresa_李庚希
定义欧拉路:从图中一个点s出发,到图中的一点t,经过每条边且每条边仅经过一次欧拉回路:欧拉路中s==t判定条件无向图所有边联通存在欧拉路:度数为奇数的点的个数为0或2存在欧拉回路:度数为奇数的点的个数为0有向图所有边联通存在欧拉路:所有点的入度==出度或除起点(出度==入度+1)和终点(入度==出度+1)外,其他点的入度==出度存在欧拉回路:除起点(出度==入度+1)和终点(入度==出度+1)外,
- 欧拉路径、欧拉回路、欧拉图傻傻分不清楚?看这一篇就够了!
一棵油菜花
算法篇深度优先算法c++笔记图论
推荐在cnblogs阅读欧拉路径、回路、图前言当一手标题党,快乐~之前一直分不清楚,写篇笔记分辨一下。欧拉路径可以一笔画的路径,称为欧拉路径。不要求起点终点为同一点。判定:有向图:图中只有一个出度比入度大111的点(起点),与一个入度比出度大111的点(终点),其余点出入度相等。无向图:图中只有两个奇点(起点和终点),其余点都是偶点。当然,将有向边视作无向边后,路径必须连通。欧拉回路在欧拉路径的基
- 1380 一笔画问题
tiger_mushroom
算法深度优先图论
如果一个无向图存在一笔画,则一笔画的路径叫做欧拉路,如果最后又回到起点,那这个路径叫做欧拉回路。#includeusingnamespacestd;#defineN510intg[N][N],d[N],c[N],n,m,reckon,oddity_point,lt;voiddfs(inti){for(intj=1;j>n>>m;intx,y;memset(g,0,sizeof(g));for(in
- 欧拉回路&欧拉路【详解】
tiger_mushroom
欧拉回路欧拉路深度优先算法
1.引入2.概念3.解决方法4.例题5.回顾1.引入经典的七桥问题哥尼斯堡是位于普累格河上的一座城市,它包含两个岛屿及连接它们的七座桥,如下图所示。可否走过这样的七座桥,而且每桥只走过一次?你怎样证明?后来大数学家欧拉把它转化成一个几何问题——一笔画问题。我们的大数学家欧拉,找到了它的重要条件1.奇点的数目不是0个就是2个奇点:就是度为奇数(有向图是判断出度与入度是否相等),反之为偶点有向图1、连
- 拆点成边来建图 +BEST定理:ABC336G
Qres821
图论BEST定理
https://www.luogu.com.cn/problem/AT_abc336_g考虑一个状态(a,b,c,d)(a,b,c,d)(a,b,c,d)要出现kkk次,如果相当于每次加1个字符,相当于要从(a,b,c)(a,b,c)(a,b,c)走到(b,c,d)(b,c,d)(b,c,d)走kkk次。因此我们就可以根据这样建图。问题转化为求一个图的欧拉路径/欧拉回路条数。由于起终点相同的边没有
- AtCoder Beginner Contest 336 G. 16 Integers(图计数 欧拉路径转欧拉回路 矩阵树定理 best定理)
Code92007
知识点总结#图计数#欧拉回路/欧拉路径图计数欧拉路径欧拉回路best定理
题目给16个非负整数,x[i∈(0,1)][j∈(0,1)][k∈(0,1)][l∈(0,1)]求长为n+3的01串的方案数,满足长度为4的ijkl(2*2*2*2,16种情况)串恰为x[i][j][k][l]个答案对998244353取模思路来源https://www.cnblogs.com/tzcwk/p/matrix-tree-best-theroem.html矩阵树定理-OIWiki知识点
- 代码随想录算法训练营第三十天|总结、332.重新安排行程、51.N皇后、37.解数独
Buuuleven.(程序媛
算法数据结构javaleetcode开发语言
代码随想录(programmercarl.com)总结332.重新安排行程欧拉通路和欧拉回路:欧拉通路:对于图G来说,如果存在一条通路包含G的所有边,则该通路称为欧拉通路,也称欧拉路径。欧拉回路:如果欧拉路径是一条回路,那么称其为欧拉回路。欧拉图:含有欧拉回路的图是欧拉图。题目中说必然存在一条有效路径,所以至少是半欧拉图,也可以是欧拉图。深度优先搜索(DFS):对每一个可能的分支路径深入到不能再深
- Java程序员面试需要注意啥?面试常见手撕模板题以及笔试模板总结
Java_苏先生
一.目录排序二分二叉树非递归遍历01背包最长递增子序列最长公共子序列最长公共子串大数加法大数乘法大数阶乘全排列子集N皇后并查集树状数组线段树字典树单调栈单调队列KMPManacher算法拓扑排序最小生成树最短路欧拉回路GCD和LCM素数筛法唯一分解定理乘法快速幂矩阵快速幂二.面试常见手撕模板题以及笔试模板总结0.Java快速输入先给一个干货,可能有些题用Java会超时(很少),下面是Petr刷题时
- C++ 图论算法之欧拉路径、欧拉回路算法(一笔画完)
一枚大果壳
c++图论算法欧拉欧拉回路
公众号:编程驿站1.欧拉图本文从哥尼斯堡七桥的故事说起。哥尼斯堡城有一条横贯全市的普雷格尔河,河中的两个岛与两岸用七座桥连结起来。当时那里的居民热衷于一个话题:怎样不重复地走遍七桥,最后回到出发点。这也是经典的一笔画完问题。1736年瑞士数学家欧拉(Euler)发表了论文《哥尼斯堡七桥问题》。论文中使用图论理论解决哥尼斯堡七桥问题,欧拉图由此而来。论文中欧拉证明了如下定理:一个非空连通图当且仅当每
- hdu-1878-欧拉回路-图论-并查集-java
Li-金玉良言
hdujavahdu图论并查集
欧拉回路TimeLimit:2000/1000MS(Java/Others)MemoryLimit:32768/32768K(Java/Others)TotalSubmission(s):14821AcceptedSubmission(s):5673ProblemDescription欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?I
- 哥尼斯堡的“七桥问题”——欧拉回路
OLDERHARD
算法数据结构
哥尼斯堡是位于普累格河上的一座城市,它包含两个岛屿及连接它们的七座桥,如下图所示。可否走过这样的七座桥,而且每桥只走过一次?瑞士数学家欧拉(LeonhardEuler,1707—1783)最终解决了这个问题,并由此创立了拓扑学。这个问题如今可以描述为判断欧拉回路是否存在的问题。欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个无向图,问是否存在欧拉回路?输入格
- [Tricks] 记各类欧拉回路问题
yingxue_cat
深度优先图论算法
以前从来没见过除了板子以外的题,但最近总是做题见到欧拉回路,然后一样的trick每次都想不到。怎么一点举一反三的能力都没有的?板子有向图的欧拉回路dfs,当前弧优化。Codestackq;voiddfs(intu){for(inti=head[u];i;i=head[u]){head[u]=e[i].nxt;intv=e[i].to;dfs(v);}q.push(u);}无向图的欧拉回路要双向标记
- 【题解】洛谷P3443 [POI2006] LIS-The Postman 题解
conti123
C++题解c++
P3443题意分析Code题意原题链接求一条以111为起点的欧拉回路,使得给定路口序列在路线及求出的欧拉回路序列中出现。分析首先,肯定是要存在欧拉路径的。而有向图中存在欧拉路径须满足以下条件:图去掉孤立点后联通和每个点的入度等于出度。注意到规定的每个路口序列都必须在路线中连续出现,及如果我们存在路线,我们不能改变走这些规定的序列的顺序。那么相当于这些边是被限制死的了,不能改变,所以可以将它们合并为
- DFS求解欧拉回路
嘻嘻哈哈Man
DFS
思路:利用欧拉定理判断出一个图存在欧拉通路或欧拉回路;选择一个正确的起始顶点,用DFS遍历所有的边(每条边只能遍历一次),走不通就回溯;在搜索前进的方向上将遍历过的边按顺序记录下来;这组边的排列就组成了一条欧拉通路或回路。参考欧拉回路原理:https://blog.csdn.net/PacosonSWJTU/article/details/50007847代码:https://blog.csdn.
- 最小字典序欧拉路径
mxYlulu
队内集训心得欧拉路径
欧拉路就是所有边都走一次,也只走一次。欧拉回路就是能够回到起点,欧拉路径没有这么多要求。算法本质是这样的:从起点开始,尽可能地不去走桥(走完之后会把图分成两半),而去走其他边,这样的输出是欧拉路径。但是判桥的过程较为麻烦,我们可以采取这样的手段。如果起点开始有两条边,一条边是应该走的边,另一条是桥。如果我们采用dfsdfsdfs的方式先遍历到底,直到无路可走的时候才加入答案栈中,我们容易知道的是最
- DFS应用——寻找欧拉回路
PacosonSWJTU
数据结构dfs欧拉回路
【0】README0.1)本文总结于数据结构与算法分析,源代码均为原创,旨在理解“DFS应用——寻找欧拉回路”的idea并用源代码加以实现(源代码,我还没有找到一种有效的数据结构和DFS进行结合,往后会po出);【1】欧拉回路1.1)欧拉回路定义:我们必须在图中找出一条路径,使得该路径对图的每条边恰好访问一次。如果我们要解决“附加的问题”,那么我们就必须找到一个圈,该圈恰好经过每条边一次,这种图论
- 【数据结构】图的简介(图的逻辑结构)
Hsianus
数据结构与算法数据结构
一.引例(哥尼斯堡七桥问题)哥尼斯堡七桥问题是指在哥尼斯堡市(今属俄罗斯)的普雷格尔河(PregelRiver)中,是否可以走遍每座桥一次且仅一次,最后回到起点的问题。这个问题被认为是图论的开端,也是数学史上著名的问题之一。欧拉在解决这个问题时,将问题转化为了图论中的欧拉回路问题。他证明了如果一个图中有欧拉回路,那么这个图中每个顶点的度数都是偶数。反之,如果每个顶点的度数都是偶数,那么这个图中就存
- 欧拉回路和欧拉路径
王木木很酷_
#数据结构与算法算法数据结构java开发语言
目录欧拉回路基础欧拉回路的定义欧拉回路的性质判断图中是否存在欧拉回路的java代码实现寻找欧拉回路的三个算法Hierholzer算法详细思路代码实现欧拉路径欧拉路径的定义欧拉路径的性质欧拉回路基础欧拉回路的定义欧拉回路遍历了所有的边,也就意味着遍历了所有的点,但这并不能代表有欧拉回路的地方都有哈密尔顿回路的,如下图的例子。欧拉回路的性质上图四个点的度数都是奇数,所以不存在欧拉回路。欧拉回路的条件:
- 图论15-有向图-环检测+度数+欧拉回路
大大枫
图论图论深度优先算法
文章目录1.有向图设计1.1私有变量标记是否有向1.2添加边的处理,双向变单向1.3删除边的处理,双向变单向1.4有向图的出度和入度2有向图的环检测2.1普通的算法实现换检测2.2拓扑排序中的环检测3欧拉回路1.有向图设计1.1私有变量标记是否有向privatebooleandirected;设计接口来判断是否有向:publicbooleanisDirected(){returndirected;
- 图论11-欧拉回路与欧拉路径+Hierholzer算法实现
大大枫
图论图论算法
文章目录1欧拉回路的概念2欧拉回路的算法实现3Hierholzer算法详解4Hierholzer算法实现4.1修改Graph,增加API4.2Graph.java4.3联通分量类4.4欧拉回路类1欧拉回路的概念2欧拉回路的算法实现privatebooleanhasEulerLoop(){CCcc=newCC(G);if(cc.count()>1)returnfalse;for(intv=0;vre
- 图论(欧拉路径)
炒饭加蛋挞
图论
理论:所有边都经过一次,若欧拉路径,起点终点相同,欧拉回路有向图欧拉路径:恰好一个out=in+1,一个in=out+1,其余in=out有向图欧拉回路:所有in=out无向图欧拉路径:两个点度数奇,其余偶无向图欧拉回路:全偶基础练习P7771【模板】欧拉路径P2731[USACO3.3]骑马修栅栏RidingtheFencesP1341无序字母对进阶P3520[POI2011]SMI-Garba
- 最优闭回路问题
七七喝椰奶
数学建模数学建模案例算法
目录一、欧拉回路与道路1、欧拉回路与道路2、欧拉图存在的条件二、中国邮路问题1、中国邮路问题2、中国邮路问题求解3、有奇点的G的中国邮路问题等价问题例1【问题分析】(1)先求图1中任意两点之间的距离矩阵d1如表1(Floyd算法)。(2)确定奇点之间的连线方案(3)规划邮路三、旅行商问题例2旅行商路线问题(算法:tsp问题)【符号设置】【模型假设】【建立模型】【数学模型】【模型求解】一、欧拉回路与
- 学习笔记:欧拉图 & 欧拉路
tsqtsqtsq0309
学习笔记
欧拉图&欧拉路定义图中经过所有边恰好一次的路径叫欧拉路径(也就是一笔画)。如果此路径的起点和终点相同,则称其为一条欧拉回路。欧拉回路:通过图中每条边恰好一次的回路。欧拉通路:通过图中每条边恰好一次的通路。欧拉图:具有欧拉回路的图。半欧拉图:具有欧拉通路但不具有欧拉回路的图。性质欧拉图中所有顶点的度数都是偶数。若GGG是欧拉图,则它为若干个环的并,且每条边被包含在奇数个环内。判别法无向图是欧拉图当且
- 2023.3.6
开星超人
c++c++算法
欧拉回路每个点的度都为偶数临接矩阵谁指向谁4指向2矩阵(4,2)记录为1临接表acwing每日一题二分找最小的不重复子序列用set去重,set翻译为集合,是一个内部自动有序且不含重复元素的容器。sets遍历长度i从1到n,遍历起点j从0到n-i,往集合放入元素s.insert(j,i)若abcdabc,i=3时,set集合1里会存入abc,bcd,cda,dab,(末尾的abc重复被去重)元素个数
- 读图数据库实战笔记01_初识图
躺柒
读图数据库实战图数据库TinkerPopGremlin图
1.图论1.1.起源于莱昂哈德·欧拉在1736年发表的一篇关于“哥尼斯堡七桥问题”的论文1.2.要解决这个问题,该图需要零个或两个具有奇数连接的节点1.3.任何满足这一条件的图都被称为欧拉图1.4.如果路径只访问每条边一次,则该图具有欧拉路径1.5.如果路径起点和终点相同,则该图具有欧拉回路,或称为欧拉环2.图2.1.顶点和边的集合2.2.示例2.2.1.路线图2.2.2.组织结构图2.3.当要思
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1