如何设计一个安全对外的接口?加签与验签了解一下

前言

我们在求职面试中,经常会被问到,如何设计一个安全对外的接口呢? 其实可以回答这一点,加签和验签,这将让你的接口更加有安全。接下来,本文将和大家一起来学习加签和验签。从理论到实战,加油哦~

  • 密码学相关概念
  • 加签验签概念
  • 为什么需要加签、验签
  • 加密算法简介
  • 加签验签相关API
  • 加签验签代码实现
  • 公众号:捡田螺的小男孩

本文已经收录到个人github,文章有用的话,可以给个star呀:

https://github.com/whx123/JavaHome

密码学相关概念

明文、密文、密钥、加密、解密

  • 明文:指没有经过加密的信息/数据。
  • 密文:明文被加密算法加密之后,会变成密文,以确保数据安全。
  • 密钥:是一种参数,它是在明文转换为密文或将密文转换为明文的算法中输入的参数。密钥分为对称密钥与非对称密钥。
  • 加密:将明文变成密文的过程。
  • 解密:将密文还原为明文的过程。

对称加密、非对称加密

  • 对称加密:加密和解密使用相同密钥的加密算法。
    如何设计一个安全对外的接口?加签与验签了解一下_第1张图片

  • 非对称加密:非对称加密算法需要两个密钥(公开密钥和私有密钥)。公钥与私钥是成对存在的,如果用公钥对数据进行加密,只有对应的私钥才能解密。

如何设计一个安全对外的接口?加签与验签了解一下_第2张图片

什么是公钥私钥?

  • 公钥与私钥是成对存在的密钥,如果用公钥对数据进行加密,只有用对应的私钥才能解密。
  • 其实,公钥就是公开的秘钥,私钥就是要你私自保存好的秘钥。
  • 非对称加密算法需要有一对公私钥~

假设你有一个文件,你用字母a加密,只有字母b才能解密;或者你用b加密,只有a才能解密,那么a和b就是一对公私钥。如果密钥a公开,密钥b你就要私自保存好啦,这时候密钥a就是公钥,密钥b就是私钥。相反,如果b公开,a就要保存好,这时候呢,秘钥b就是公钥,秘钥a就是私钥。

加签验签概念

  • 加签:用Hash函数把原始报文生成报文摘要,然后用私钥对这个摘要进行加密,就得到这个报文对应的数字签名。通常来说呢,请求方会把数字签名和报文原文一并发送给接收方。
    如何设计一个安全对外的接口?加签与验签了解一下_第3张图片

  • 验签:接收方拿到原始报文和数字签名后,用同一个Hash函数从报文中生成摘要A。另外,用对方提供的公钥对数字签名进行解密,得到摘要B,对比A和B是否相同,就可以得知报文有没有被篡改过。

如何设计一个安全对外的接口?加签与验签了解一下_第4张图片

为什么需要加签验签

上小节中,加签和验签我们已经知道概念啦,那么,为什么需要加签和验签呢?有些朋友可能觉得,我们不是用公钥加密,私钥解密就好了嘛?

接下来呢,举个demo吧。

假设现在有A公司,要接入C公司的转账系统。在一开始呢,C公司把自己的公钥寄给A公司,自己收藏好私钥。A公司这边的商户,发起转账时,A公司先用C公司的公钥,对请求报文加密,加密报文到达C公司的转账系统时,C公司就用自己的私钥把报文揭开。假设在加密的报文在传输过程中,被中间人Actor获取了,他也郁闷,因为他没有私钥,看着天鹅肉,又吃不了。本来想修改报文,给自己账号转一个亿的,哈哈。这个实现方式看起来是天衣无缝,稳得一匹的。

如何设计一个安全对外的接口?加签与验签了解一下_第5张图片

但是呢,如果一开始,C公司把公钥发给公司A的时候,就被中间人Actor获取到呢,酱紫就出问题了。

中间人Actor截取了C的公钥,他把自己的公钥发给了A公司,A误以为这就是C公司的公钥。A在发起转账时,用Actor的公钥,对请求报文加密,加密报文到在传输过程,Actor又截取了,这时候,他用自己的私钥解密,然后修改了报文(给自己转一个亿),再用C的公钥加密,发给C公司,C公司收到报文后,继续用自己的私钥解密。最后是不是A公司的转账账户损失了一个亿呢~

如何设计一个安全对外的接口?加签与验签了解一下_第6张图片

C公司是怎么区分报文是不是来自A呢,还是被中间人修改过呢?为了表明身份和报文真实性,这就需要加签验签啦!

A公司把自己的公钥也发送给C公司,私钥自己保留着。在发起转账时,先用自己的私钥对请求报文加签,于是得到自己的数字签名。再把数字签名和请求报文一起发送给C公司。C公司收到报文后,拿A的公钥进行验签,如果原始报文和数字签名的摘要内容不一致,那就是报文被篡改啦~

如何设计一个安全对外的接口?加签与验签了解一下_第7张图片

有些朋友可能有疑问,假设A在发自己的公钥给C公司的时候,也被中间人Actor截取了呢。嗯嗯,我们来模拟一波Actor又截取了公钥,看看Actor能干出什么事情来~哈哈

假设Actor截取到A的公钥后,随后也截取了到A发往C的报文。他截取到报文后,第一件想做的事肯定是修改报文内容。但是如果单单修改原始报文是不可以的,因为发过去C公司肯定验签不过啦。但是呢,数字签名似乎解不开,因为消息摘要算法(hash算法)无法逆向解开的,只起验证的作用呢....

所以呢,公钥与私钥是用来加密与加密的,加签与验签是用来证明身份,以免被篡改的。

常见加密相关算法简介

  • 消息摘要算法
  • 对称加密算法
  • 非对称加密算法
  • 国密算法

消息摘要算法:

  • 相同的明文数据经过相同的消息摘要算法会得到相同的密文结果值。
  • 数据经过消息摘要算法处理,得到的摘要结果值,是无法还原为处理前的数据的。
  • 数据摘要算法也被称为哈希(Hash)算法或散列算法。
  • 消息摘要算法一般用于签名验签。

消息摘要算法主要分三类:MD(Message Digest,消息摘要算法)、SHA(Secure Hash Algorithm,安全散列算法)和MAC(Message Authentication Code,消息认证码算法)。

如何设计一个安全对外的接口?加签与验签了解一下_第8张图片

MD家族算法

MD(Message Digest,消息摘要算法)家族,包括MD2,MD4,MD5。

  • MD2,MD4,MD5 计算的结果都是是一个128位(即16字节)的散列值,用于确保信息传输完整一致。
  • MD2的算法较慢但相对安全,MD4速度很快,但安全性下降,MD5则比MD4更安全、速度更快。
  • MD5被广泛应用于数据完整性校验、数据(消息)摘要、数据加密等。
  • MD5,可以被破解,对于需要高度安全性的数据,专家一般建议改用其他算法,如SHA-2。2004年,证实MD5算法无法防止碰撞攻击,因此不适用于安全性认证,如SSL公开密钥认证或是数字签名等用途。

举个例子,看看如何获取字符串的MD5值吧:

public class MD5Test {

    public static void main(String[] args) throws UnsupportedEncodingException {
        String s = "123";
        byte[] result = getMD5Bytes(s.getBytes());
        StringBuilder stringBuilder = new StringBuilder();
        for (byte temp : result) {
            if (temp >= 0 && temp < 16) {
                stringBuilder.append("0");
            }
            stringBuilder.append(Integer.toHexString(temp & 0xff));
        }
        System.out.println(s + ",MD5加密后:" + stringBuilder.toString());
    }

    private static byte[] getMD5Bytes(byte[] content) {
        try {
            MessageDigest md5 = MessageDigest.getInstance("MD5");
            return md5.digest(content);
        } catch (NoSuchAlgorithmException e) {
            throw new RuntimeException(e);
        }
    }
}


运行结果:

123,MD5加密后:202cb962ac59075b964b07152d234b70

ShA家族算法

SHA(Secure Hash Algorithm,安全散列算法),包括SHA-0、SHA-1、SHA-2(SHA-256,SHA-512,SHA-224,SHA-384等)、SHA-3。它是在MD算法基础上实现的,与MD算法区别在于摘要长度,SHA 算法的摘要长度更长,安全性更高

  • SHA-0发布之后很快就被NSA撤回,因为含有会降低密码安全性的错误,它是SHA-1的前身。
  • SHA-1在许多安全协议中广为使用,包括TLS、GnuPG、SSH、S/MIME和IPsec,是MD5的后继者。
  • SHA-2包括SHA-224、SHA-256、SHA-384、SHA-512、SHA-512/224、SHA-512/256。它的算法跟SHA-1基本上相似,目前还没有出现明显弱点。
  • SHA-3是2015年正式发布,由于对MD5出现成功的破解,以及对SHA-0和SHA-1出现理论上破解的方法,SHA-3应运而生。它与之前算法不同的是,它是可替换的加密散列算法。

SHA-1、SHA-2(SHA-256,SHA-512,SHA-224,SHA-384)等算法是比较常用的,我们来看看跟MD5的对比吧

算法类型 摘要长度(bits) 最大输入消息长度(bits) 碰撞攻击(bits) 性能示例(MiB/s)
MD5 128 无限 ≤18(发现碰撞) 335
SHA-1 160 2^64 − 1 <63(发现碰撞) 192
SHA-224 224 2^64 − 1 112 139
SHA-256 256 2^64 − 1 128 139
SHA-384 384 2^128 − 1 192 154
SHA-512 512 2^128 − 1 256 154

MAC算法家族

MAC算法 MAC(Message Authentication Code,消息认证码算法),是带密钥的Hash函数。输入密钥和消息,输出一个消息摘要。
它集合了MD和SHA两大系列消息摘要算法。

  • MD 系列算法: HmacMD2、HmacMD4 和 HmacMD5 ;
  • SHA 系列算法:HmacSHA1、HmacSHA224、HmacSHA256、HmacSHA384 和 HmacSHA512 。

对称加密算法

加密和解密使用相同密钥的加密算法就是对称加密算法。常见的对称加密算法有AES、3DES、DES、RC5、RC6等。

如何设计一个安全对外的接口?加签与验签了解一下_第9张图片

DES

数据加密标准(英语:Data Encryption Standard,缩写为 DES)是一种对称密钥加密块密码算法。
DES算法的入口参数有三个:Key、Data、Mode。

  • Key: 7个字节共56位,是DES算法的工作密钥;
  • Data: 8个字节64位,是要被加密或被解密的数据;
  • Mode: 加密或解密。

3DES

三重数据加密算法(英语:Triple Data Encryption Algorithm,又称3DES(Triple DES),是一种对称密钥加密块密码,相当于是对每个数据块应用三次数据加密标准(DES)算法。

AES

AES,高级加密标准(英语:Advanced Encryption Standard),在密码学中又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。

  • 采用对称分组密码体制,密钥长度为 128 位、 192 位、256 位,分组长度128位
  • 相对于DES ,AES具有更好的 安全性、效率 和 灵活性。

非对称加密算法

非对称加密算法需要两个密钥:公钥和私钥。公钥与私钥是成对存在的,如果用公钥对数据进行加密,只有用对应的私钥才能解密。主要的非对称加密算法有:RSA、Elgamal、DSA、D-H、ECC。

如何设计一个安全对外的接口?加签与验签了解一下_第10张图片

RSA算法

  • RSA加密算法是一种非对称加密算法,广泛应用于加密和数字签名
  • RSA算法原理:两个大素数的乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。
  • RSA是被研究得最广泛的公钥算法,从提出到现在,经历了各种攻击的考验,普遍认为是目前最优秀的公钥方案之一。

DSA

  • DSA(Digital Signature Algorithm,数字签名算法),也是一种非对称加密算法。
  • DSA和RSA区别在,DSA仅用于数字签名,不能用于数据加密解密。其安全性和RSA相当,但其性能要比RSA好。

ECC 算法

  • ECC(Elliptic Curves Cryptography,椭圆曲线密码编码学),基于椭圆曲线加密。
  • Ecc主要优势是,在某些情况下,它比其他的方法使用更小的密钥,比如RSA加密算法,提供相当的或更高等级的安全级别。
  • 它的一个缺点是,加密和解密操作的实现比其他机制时间长 (相比RSA算法,该算法对CPU 消耗严重)。

国密算法

国密即国家密码局认定的国产密码算法。为了保障商用密码的安全性,国家商用密码管理办公室制定了一系列密码标准,即SM1,SM2,SM3,SM4等国密算法。

如何设计一个安全对外的接口?加签与验签了解一下_第11张图片

SM1

  • SM1,为对称加密算法,加密强度为128位,基于硬件实现。
  • SM1的加密强度和性能,与AES相当。

SM2

  • SM2主要包括三部分:签名算法、密钥交换算法、加密算法
  • SM2用于替换RSA加密算法,基于ECC,效率较低。

SM3

  • SM3,即国产消息摘要算法。
  • 适用于商用密码应用中的数字签名和验证,消息认证码的生成与验证以及随机数的生成。

SM4

  • SM4是一个分组算法,用于无线局域网产品。
  • 该算法的分组长度为128比特,密钥长度为128比特。
  • 加密算法与密钥扩展算法都采用32轮非线性迭代结构。
  • 解密算法与加密算法的结构相同,只是轮密钥的使用顺序相反,解密轮密钥是加密轮密钥的逆序。
  • 它的功能类似国际算法的DES。

加签验签相关Java的API

这个小节先介绍一下加签验签需要用到的API吧~

如何设计一个安全对外的接口?加签与验签了解一下_第12张图片

加签相关API

- java.security.Signature.getInstance(String algorithm); //根据对应算法,初始化签名对象
- KeyFactory.getInstance(String algorithm);// 根据对应算法,生成KeyFactory对象
- KeyFactory.generatePrivate(KeySpec keySpec); //生成私钥
- java.security.Signature.initSign(PrivateKey privateKey) //由私钥,初始化加签对象
- java.security.Signature.update(byte[] data)  //把原始报文更新到加签对象
- java.security.Signature.sign();//加签

Signature.getInstance(String algorithm);

  • 根据对应算法,初始化签名对象
  • algorithm参数可以取SHA256WithRSA或者MD5WithRSA等参数,SHA256WithRSA表示生成摘要用的是SHA256算法,签名加签用的是RSA算法

KeyFactory.getInstance(String algorithm);

  • 根据对应算法,生成KeyFactory对象,比如你的公私钥用的是RSA算法,那么就传入RSA

KeyFactory.generatePrivate(KeySpec keySpec)

  • 生成私钥,加签用的是私钥哈,所以需要通过KeyFactory先构造一个私钥对象。

Signature.initSign(PrivateKey privateKey)

  • 加签用的是私钥,所以传入私钥,初始化加签对象

Signature.update(byte[] data)

  • 把原始报文更新到加签对象

java.security.Signature.sign();

  • 进行加签操作

验签相关API

- java.security.Signature.getInstance(String algorithm); //根据对应算法,初始化签名对象
- KeyFactory.getInstance(String algorithm);// 根据对应算法,生成KeyFactory对象
- KeyFactory.generatePublic(KeySpec keySpec); //生成公钥
- java.security.Signature.initVerify(publicKey); //由公钥,初始化验签对象
- java.security.Signature.update(byte[] data)  //把原始报文更新到验签对象
- java.security.Signature.verify(byte[] signature);//验签

Signature.getInstance(String algorithm)

  • 根据对应算法,初始化签名对象,注意验签和加签是需要用相同的algorithm算法参数哦~

KeyFactory.getInstance(String algorithm);

  • 根据对应算法,生成KeyFactory对象

KeyFactory.generatePublic(KeySpec keySpec);

  • 生成公钥,验签用的是公钥,通过KeyFactory先构造一个公钥对象

**Signature.initVerify(publicKey); **

  • 公钥验签,所以传入公钥对象参数,初始化验签对象

Signature.update(byte[] data)

  • 把原始报文更新到加签对象

Signature.verify(byte[] signature);

  • 进行验签操作

加签验签代码实现

前几个小节讨论完概念,是时候上代码实战了,如下:

package pattern;

import sun.misc.BASE64Decoder;
import sun.misc.BASE64Encoder;

import java.io.IOException;
import java.io.UnsupportedEncodingException;
import java.security.*;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.PKCS8EncodedKeySpec;

/**
 * 加签验签demo
 *  @Author 捡田螺的小男孩
 */
public class SignatureTest {
    //公钥字符串
    private static final String PUBLIC_KEY_STR = "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDaJzVjC5K6kbS2YE2fiDs6H8pB\n" +
            "JFDGEYqqJJC9I3E0Ebr5FsofdImV5eWdBSeADwcR9ppNbpORdZmcX6SipogKx9PX\n" +
            "5aAO4GPesroVeOs91xrLEGt/arteW8iSD+ZaGDUVV3+wcEdci/eCvFlc5PUuZJou\n" +
            "M2XZaDK4Fg2IRTfDXQIDAQAB";
    //私钥字符串
    private static final String PRIVATE_KEY_STR = "MIICdQIBADANBgkqhkiG9w0BAQEFAASCAl8wggJbAgEAAoGBANonNWMLkrqRtLZg\n" +
            "TZ+IOzofykEkUMYRiqokkL0jcTQRuvkWyh90iZXl5Z0FJ4APBxH2mk1uk5F1mZxf\n" +
            "pKKmiArH09floA7gY96yuhV46z3XGssQa39qu15byJIP5loYNRVXf7BwR1yL94K8\n" +
            "WVzk9S5kmi4zZdloMrgWDYhFN8NdAgMBAAECgYA9bz1Bn0i68b2KfqRdgOfs/nbe\n" +
            "0XNN1DLQp2t7WDfRCg01iI1zPkZgyFVZWtI85f5/uIrLs5ArLosL1oNuqqc0nNne\n" +
            "CvJK+ZxvA98Hx3ZqYTzDnleR054YhofL5awbhSciYVic204DOG1rhSsYWMqtX7J7\n" +
            "3geoWL7TYdMfYXcCAQJBAPMMKsz6ZJh98EeQ1tDG5gpAGWFQkYNrxZDelP/LjeO0\n" +
            "TP3XkQnIpcaZoCs7V/rRGRGMWwQ2BUdc/01in89ZZ5ECQQDlx2oBc1CtOAm2UAhN\n" +
            "1xWrPkZWENQ53wTrwXO4qbTGDfBKon0AehLlGCSqxQ71aufLkNO7ZlX0IHTAlnk1\n" +
            "TvENAkAGSEQ69CXxgx/Y2beTwfBkR2/gghKg0QJUUkyLqBlMz3ZGAXJwTE1sqr/n\n" +
            "HiuSAiGhwH0ByNuuEotO1sPGukrhAkAMK26a2w+nzPL+u+hkrwKPykGRZ1zGH+Cz\n" +
            "19AYNKzFXJGgclCqiMydY5T1knBDYUEbj/UW1Mmyn1FvrciHoUG1AkAEMEIuDauz\n" +
            "JabEAU08YmZw6OoDGsukRWaPfjOEiVhH88p00veM1R37nwhoDMGyEGXVeVzNPvk7\n" +
            "cELg28MSRzCK";


    public static void main(String[] args) throws SignatureException, NoSuchAlgorithmException, InvalidKeyException, IOException, InvalidKeySpecException {
        //原始报文
        String plain = "欢迎大家关注我的公众号,捡田螺的小男孩";
        //加签
        byte[] signatureByte = sign(plain);
        System.out.println("原始报文是:" + plain);
        System.out.println("加签结果:");
        System.out.println(new BASE64Encoder().encode(signatureByte));
        //验签
        boolean verifyResult = verify(plain, signatureByte);
        System.out.println("验签结果:" + verifyResult);
    }

    /**
     * 加签方法
     * @param plain
     * @return
     * @throws NoSuchAlgorithmException
     * @throws InvalidKeyException
     * @throws UnsupportedEncodingException
     * @throws SignatureException
     */
    private static byte[] sign(String plain) throws NoSuchAlgorithmException, InvalidKeyException, UnsupportedEncodingException, SignatureException {
        //根据对应算法,获取签名对象实例
        Signature signature = Signature.getInstance("SHA256WithRSA");
        //获取私钥,加签用的是私钥,私钥一般是在配置文件里面读的,这里为了演示方便,根据私钥字符串生成私钥对象
        PrivateKey privateKey = getPriveteKey(PRIVATE_KEY_STR);
        //初始化签名对象
        signature.initSign(privateKey);
        //把原始报文更新到对象
        signature.update(plain.getBytes("UTF-8"));
        //加签
        return signature.sign();
    }

    /**
     * 验签方法
     * @param plain
     * @param signatureByte
     * @return
     * @throws NoSuchAlgorithmException
     * @throws InvalidKeyException
     * @throws IOException
     * @throws SignatureException
     * @throws InvalidKeySpecException
     */
    private static boolean verify(String plain, byte[] signatureByte) throws NoSuchAlgorithmException, InvalidKeyException, IOException, SignatureException, InvalidKeySpecException {
        //获取公钥
        PublicKey publicKey = getPublicKey(PUBLIC_KEY_STR);
        //根据对应算法,获取签名对象实例
        Signature signature = Signature.getInstance("SHA256WithRSA");
        //初始化签名对象
        signature.initVerify(publicKey);
        //把原始报文更新到签名对象
        signature.update(plain.getBytes("UTF-8"));
        //进行验签
        return signature.verify(signatureByte);
    }

    private static PublicKey getPublicKey(String publicKeyStr) throws InvalidKeySpecException, IOException {
        PublicKey publicKey = null;
        try {
            java.security.spec.X509EncodedKeySpec bobPubKeySpec = new java.security.spec.X509EncodedKeySpec(
                    new BASE64Decoder().decodeBuffer(publicKeyStr));
            // RSA对称加密算法
            java.security.KeyFactory keyFactory;
            keyFactory = java.security.KeyFactory.getInstance("RSA");
            // 生成公钥对象
            publicKey = keyFactory.generatePublic(bobPubKeySpec);
           } catch (NoSuchAlgorithmException e) {
             e.printStackTrace();
            }
        return publicKey;
      }

    private static PrivateKey getPriveteKey(String privateKeyStr) {
        PrivateKey privateKey = null;
        PKCS8EncodedKeySpec priPKCS8;
        try {
            priPKCS8 = new PKCS8EncodedKeySpec(new BASE64Decoder().decodeBuffer(privateKeyStr));
            KeyFactory keyf = KeyFactory.getInstance("RSA");
            privateKey = keyf.generatePrivate(priPKCS8);
        } catch (IOException | NoSuchAlgorithmException | InvalidKeySpecException e) {
            e.printStackTrace();
        }
        return privateKey;
    }
}

运行结果:

原始报文是:欢迎大家关注我的公众号,捡田螺的小男孩
加签结果:
Oz15/aybGe42eGHbc+iMoSYHSCc8tfRskTVjjGSTPD4HjadL0CC5JUWNUW0WxHjUb4MvxWo2oeWE
Qw0+m61d+JgBMto/TWcVDcgwL/AbObsbWdQ6E/fVRqG13clkE8MyKsjt9Z7tcbwpycYTv0rUR4co
rndAVfBdtv5KeV+OXqM=
验签结果:true

参考与感谢

  • 维基百科
  • 百度百科
  • 常用消息摘要算法简介
  • 浅谈常见的七种加密算法及实现
  • 【易错概念】国密算法SM1(SCB2)、SM2、SM3、SM4、SM7、SM9、ZUC

微信公众号

如何设计一个安全对外的接口?加签与验签了解一下_第13张图片

你可能感兴趣的:(如何设计一个安全对外的接口?加签与验签了解一下)