- 深度学习特征提取魔改版太强了!发文香饽饽!
深度之眼
深度学习干货人工智能干货人工智能深度学习机器学习论文特征提取
要说CV领域经久不衰的研究热点,特征提取可以占一席,毕竟SLAM、三维重建等重要应用的底层都离不开它。再加上近几年深度学习兴起,用深度学习做特征提取逐渐成了主流,比传统算法无论是性能、准确性还是效率都更胜一筹。目前比较常见的深度学习特征提取方法有基于transformer、基于CNN、基于LSTM以及基于GAN,都发展的比较成熟。但为了追求更快速、准确、鲁棒的特征点提取,研究者们开始致力于改进深度
- **深度融合未来——DI-Fusion:开启在线三维重建新篇章**
余靖年Veronica
深度融合未来——DI-Fusion:开启在线三维重建新篇章在三维世界探索的前沿,一项名为DI-Fusion的技术正悄然掀起一波科技浪潮。由清华大学的JiahuiHuang、Shi-ShengHuang等人共同研发,这项创新成果已在CVPR2021上大放异彩,它的出现标志着在线隐式三维重构领域的重大突破。项目介绍重塑三维视觉新纪元DI-Fusion,又称为深度融合,是一项基于RGB-D流数据的新型在
- Unique3D:开启单张图片三维重建新篇章
余靖年Veronica
Unique3D:开启单张图片三维重建新篇章Unique3DOfficialimplementationofUnique3D:High-QualityandEfficient3DMeshGenerationfromaSingleImage项目地址:https://gitcode.com/gh_mirrors/un/Unique3D在当今高速发展的科技领域中,三维重建技术正以惊人的速度改变着我们的视
- unity3d 大地图接壤_多人紧密交互场景下的多视角人体动态三维重建方法与流程...
weixin_39947908
unity3d大地图接壤
本发明属于计算机视觉和图形学领域,具体讲,涉及人体关键点检测、追踪和人体三维模型重建方法。背景技术:在计算机视觉和计算机图形学中,无标记人体运动捕捉已经成为一个热门并且具有挑战性的热点问题,其主要任务是通过跟踪视频中移动对象的运动来恢复动态时间一致的3D形状。最近十年以来单人运动捕捉方法取得了巨大的进步,然而当前的方法需要对相机进行设置或处于一个受控的工作室环境中,并且依赖于良好的图像分割技术。在
- 通俗易懂学nerf——初识nerf
四个字
通俗易懂学nerf人工智能自动驾驶python
nerf,听起来像是一个神秘的魔法词汇,但它其实是一种前沿且超酷的技术!它是能让你从二维世界“跃升”到三维空间的神奇技术。想象一下,你手里有一张平面的照片,上面的风景、建筑都是扁平的,仿佛缺少了生命力。但有了NERF三维重建,这一切都变得鲜活起来!它就像是个超级魔术师,轻轻一挥,那张平面的照片就变成了立体的三维模型,仿佛你可以走进去,感受那里的空气、触摸那里的物体。nerf是怎么做到的呢?其实它的
- NeRF——基于神经辐射场的三维场景重建和理解
知来者逆
数字人NeRF3D重建3d计算机视觉人工智能
概述三维重建是一种将物理世界中的实体转换为数字模型的计算机技术。其基本概念是通过对物理世界中的物体或场景进行扫描或拍摄,并使用计算机算法将其转换为三维数字模型。抽象意义上的三维模型指的是:形状和外观的组合,并且可以渲染成不同视角下真实感强烈的RGB图像。三维重建技术可以应用于许多领域,如建筑设计、游戏开发、虚拟现实等。通过三维重建技术,可以快速、准确地获取物体的几何形状、纹理、颜色等信息,从而实现
- 【视觉三维重建】【论文笔记】Deblurring 3D Gaussian Splatting
CS_Zero
论文阅读
去模糊的3D高斯泼溅,看Demo比3D高斯更加精细,对场景物体细节的还原度更高,[官网](https://benhenryl.github.io/Deblurring-3D-Gaussian-Splatting/)背景技术Volumetricrendering-basednerualfields:NeRF.Rasterizationrendering:3D-GS.Rasterization比vol
- 如果对类似汽车这种单体进行建模,围绕一圈拍摄,普通的手机或者相机拍摄的照片有足够的重叠度就能建模吗?不需要专业的设备可以吗?
大势智慧
汽车3d一问一答实景三维三维建模三维重建
答:可以建模。提供了完备的单体照片,在不需专业设备的情况下也可实现建模。重建大师是一款专为超大规模实景三维数据生产而设计的集群并行处理软件,输入倾斜照片,激光点云,POS信息及像控点,输出高精度彩色网格模型,可一键完成空三、自动建模和LOD构建。下载地址:武汉大势智慧-实景三维-云端建模-新型基础设施#实景三维##三维重建##重建大师##三维模型##三维建模##一问一答#
- 草图三维模型生成论文阅读整理
fisherisfish
论文阅读
论文终于接收啦!给草图研究做个收尾就去投实习!仅为个人整理,如有错误,欢迎指出!因为想给论文找创新点,所以需要大量阅读论文,部分论文会精读到实现的步骤,部分论文就记录一下思路。目前基于大模型和深度学习的三维重建任务可以简单分类为text23D,也就是文本控制转三维模型,一般使用语言模型提取文本的特征,然后去噪概率扩散模型生成多视角图像,最后再用NeRF进行三维重建,例如Dreamfusion、Ma
- 基于激光点云操作可视化界面
云杂项
python3d创业创新
基于激光点云操作可视化界面使用说明书第一章系统概述基于激光点云操作可视化界面是进行点云文件综合处理的GUI界面,包括计算点云文件中心点、点云文件体素化、点云文件的三维重建和点云文件网格化等模块。主要功能是快速的对点云文件进行读入,展示和处理,通过GUI界面对点云文件进行数据的提取和展示。该GUI界面可以对点云文件的加工和处理的各个环节进行快速计算、统一展示和有效保存,为之后对3D点云文件底层快速处
- PyQt Python 使用 VTK ITK 进行分割 三维重建 医学图像可视化系统 流程
恋恋西风
PythonpyqtpythonVTKITK
效果:重建流程:1.输入可以读取DICOM,niinrrd等数据设置读取器以加载DICOM图像系列。使用itk::GDCMImageIO作为DICOM图像的输入输出接口。使用itk::GDCMSeriesFileNames获取指定路径下的所有DICOM文件名。使用itk::ImageSeriesReader读取DICOM图像序列,并将其作为3D图像存储。2.分割创建itk::ThresholdIm
- 三维重建 阈值分割 3D可视化 医学图像分割 CT图像分割及重建系统 可视化编程技术及应用
恋恋西风
VTK毕业设计和论文qt三维重建VTKITK图像分割
一、概述此系统实现了常见的VTK四视图,实现了很好的CT图像分割,可以用于骨骼,头部,肺部,脂肪等分割,,并且通过三维重建实现可视化。使用了第三方库VTK,ITK实现分割和生不重建。窗口分为(横断面)、冠状面、矢状面,和3D窗口;包含了体绘制和面绘制;效果:CT分割重建二、开发环境操作系统:Windows10:工具:Qt5.12.4+VisualStudio2017,使用开源库:VTK-8.1IT
- Depth Anything放入MVS中?
cashap27149
算法
这是DepthAnything的深度值depth,这个depth通过depth=depth_anything(image)求得。但想要把这个深度值depth嵌入到三维重建算法框架中,并不是一件容易得事情,拿OpenMVS举例,下图是OpenMVS输出深度图的函数。OpenMVS的深度值保存在depthMap中,我们来看看depthMap的具体结构,可以看到OpenMVS使用TImage模板类实例化
- 3DCaricShop: A Dataset and A Baseline Method for Single-view 3D Caricature Face Reconstruction
理想很丰满,现实很骨感
#单视图三维人脸重建计算机视觉深度学习神经网络
目录1.文章概述2.相关工作2.1关于数据集2.2关于单视图三维重建3.本文核心方法3.13DCaricShop数据集3.2提出的baseline方法进行三维重建3.2.1概述3.2.2流程1.参数化建模(PCA)2.隐式三维重建3.3D关键点预测4.关键点引导的模型匹配3.2.3VC-GCN(视图协同图卷积网络)1.初始化2.图卷积4.最终效果1.文章概述3DCaricShop指的是文章提出的一
- KinectFusion论文品读
自信侠
KinectFusion:Real-timedensesurfacemappingandtracking论文链接:https://ieeexplore.ieee.org/document/6162880参考视频:KinectFusion和ElasticFusion三维重建方法-付兴银https://www.bilibili.com/video/av6060335/参考博文:https://www.
- [图形学/三维重建]大白话推导-摄像机内参(Intrinsic)、外参、3D物体坐标变换成2D
Bartender_Jill
Graphics图形学笔记3d图形渲染算法游戏引擎ue5动画
文章目录前言一、基础知识了解1.13D场景to2D图像1.2矩阵运算表达1.3摄像机坐标系原点设置二、内参矩阵三、外参总结前言参考资料https://www.bilibili.com/video/BV1Ae41127Yf?p=2一、基础知识了解在日常生活中,光线与物体界面的交互,构成了我们眼里的图像。但是为什么只有眼睛有成像,而像墙壁/桌子等这些平面上不会成像呢?比如我举着一张纸在半空中,周围环境
- 图像处理入门:OpenCV的基础用法解析
kadog
ByGPT图像处理opencv人工智能计算机视觉
图像处理入门:OpenCV的基础用法解析引言OpenCV的初步了解深入理解OpenCV:计算机视觉的开源解决方案什么是OpenCV?OpenCV的主要功能1.图像处理2.图像分析3.结构分析和形状描述4.动态分析5.三维重建6.机器学习7.目标检测OpenCV的应用场景OpenCV的安装基本图像操作图像的读取与显示图像的基本信息图像的保存图像处理技巧图像转换边缘检测特征检测与匹配引言OpenCV(
- 计算机视觉中的Homography单应矩阵应用小结
CS_Zero
SLAM计算机视觉CV计算机视觉slam几何学
计算机视觉中的Homography(单应)矩阵应用小结Homography矩阵在StructurefromMotion(SfM)或三维重建、视觉SLAM的初始化过程有着重要应用,本文总结了单应矩阵出现场景与常见问题求解。文章目录计算机视觉中的Homography(单应)矩阵应用小结单应矩阵的推导单应矩阵的求解与分解位姿问题单应矩阵的推导一般地,单应模型出现的前提条件是空间点分布在同一个平面上,例外
- 三维重建衡量指标记录
我宿孤栈
人工智能#视觉相关深度学习目标检测计算机视觉
1、完整性比率CompletenessRati(CR)完整性比率完整性比率是用于评估三维重建质量的指标之一,它衡量了重建结果中包含的真实物体表面或点云的百分比。完整性比率通常是通过比较重建结果中的点云或三维模型与真实或标准点云或模型之间的重叠来计算的。具体计算步骤可能如下:定义真实模型和重建模型:首先,需要有一个真实的或标准的三维模型或点云,以及一个重建的三维模型或点云(由三维重建技术生成)。计算
- 第十一篇【传奇开心果系列】Python的OpenCV技术点案例示例:三维重建
传奇开心果编程
Python库OpenCV技术点案例示例短博文python计算机视觉opencv
传奇开心果短博文系列系列短博文目录Python的OpenCV技术点案例示例系列短博文目录一、前言二、OpenCV三维重建介绍三、基于区域的SGBM示例代码四、BM(BlockMatching)算法介绍和示例代码五、基于能量最小化的GC(GraphCut)算法介绍和示例代码六、相机标定介绍和示例代码七、特征提取与匹配介绍和示例代码八、三角测量介绍和示例代码九、通过特征匹配和RANSAC(Random
- OpenCV学习记录——特征匹配
KAIs32
树莓派——OpenCVopencv学习人工智能嵌入式硬件计算机视觉
文章目录前言一、暴力匹配步骤分析二、代码分析前言特征匹配是一种图像处理技术,用于在不同图像之间寻找相似的特征点,并将它们进行匹配。特征匹配在计算机视觉和图像处理领域中具有广泛的应用,包括目标识别、图像拼接、三维重建等。一、暴力匹配步骤分析暴力匹配是一种简单直接的匹配方法,它遍历所有特征点的描述符,并计算它们之间的距离。然后根据距离进行排序,选择距离最短的特征点作为匹配点。虽然暴力匹配方法简单,但在
- 科普类——进行基线设计、系统测试和优化的立体视觉软件与工具(七)
JANGHIGH
科普类无人驾驶自动驾驶
科普类——进行基线设计、系统测试和优化的立体视觉软件与工具(七)在立体视觉领域,有许多立体视觉软件和工具可以帮助工程师进行基线设计、系统测试和优化。以下是一些常用的立体视觉软件和工具:Meshroom:这是一个基于AliceVision摄影测量计算机视觉框架的免费开源三维重建软件。Meshroom可以处理大规模的图像数据集,进行立体视觉重建。OpenMVG(OpenMultipleViewGeom
- 三维重建开源函数库或者工具
冰清-小魔鱼
遥感GIS计算机视觉目标检测人工智能
三维重建使用摄影测量、计算机视觉技术,利用立体视觉恢复真实相机姿态,获取现实物体的三维信息,并进行虚拟三维场景重现。1、OpenDroneMapODM是一个基于航空影像的三维重建集成工具箱,利用多幅航空影像恢复相机姿态和3D场景,可以生产点云、三维贴图模型、正射影像、数字表面模型、数字高程模型等,提供Web接口,支持CUDA加速,基础函数库使用OpenSfM,OpenMVS,PDAL,Entwin
- 三维重建方法3D gaussian splatting与NeRF的区别和异同
Soumes
3d计算机视觉人工智能深度学习机器学习
最近学习了一些三维重建相关的内容,目前比较主要的重建流派就是3DGS以及NeRF,NeRF作为2020年发布的文章轰动一时,影响深远,有很多NeRFbased的相关工作在这些年涌现。3DGS作为2023年的newtalkofthetown,其在保证合成质量的情况下能够以数倍乃至数十倍的速度碾压许多NeRFbased的方法,因此得到了广泛关注。这篇文章从几个角度比较了NeRF(最初的版本)和3Dga
- 【3DGS】从新视角合成到3D Gaussian Splatting
UnderTurrets
图形渲染计算机视觉3d
文章目录引言:什么是新视角合成任务定义一般步骤NeRF的做法NeRF的三维重建NeRF的渲染3DGS的三维重建从一组图片估计点云高斯点云模型球谐函数参数优化损失函数和协方差矩阵的优化高斯点的数量控制(AdaptiveDensityControl)新的问题3DGS的渲染:快速可微光栅化3DGS的限制引言:什么是新视角合成任务定义新视角合成(NovelViewSynthesis),属于计算机视觉领域,
- 三维重建经典论文合集汇总
深蓝学院
人工智能三维重建视觉
三维重建涉及计算机视觉、图形学等多门知识,是一套非常复杂的系统。经典三维重建系统包括整个pipeline从相机标定、基础矩阵与本质矩阵估计、特征匹配到运动恢复结构(SFM),从SFM到稠密点云重建、表面重建、纹理贴图。其中,熟悉SFM的工程师已经是行业内的佼佼者,能掌握稠密点云重建与表面重建的工程师更是凤毛麟角。图1经典三维重建系统pipeline三维重建是当下计算机视觉的一个研究热点,虽然从业者
- 【三维重建】双目立体视觉
Patrick star`
人工智能
通过极几何可以求得极线,现在我们需要将左边的图变成右边的平行视图。所有的极线都经过极点(e/e'),如果极点位于无穷远处,那所有的极线都平行。(极几何的基础知识可以参考这篇文章:【三维重建】对极几何-CSDN博客)平行视图中,可以利用视差就得深度,视差越小深度越深。如何得到平行视图呢?
- 【三维重建】三角化
Patrick star`
数码相机
三角化要解决的问题是:已知两个相机的内参K、K'、相机之间的旋转平移矩阵R、t以及匹配点p、p',如何求得P点的三维坐标?线性解法C++代码实现:https://github.com/ldx-star/Triangulation.git
- 【三维重建】运动恢复结构(SfM)
Patrick star`
算法
运动恢复结构是通过三维场景的多张图像,恢复出该场景的三维结构信息以及每张图片对应的摄像机参数。欧式结构恢复(内参已知,外参未知)欧式结构恢复问题:已知:1、n个三维点在m张图像中的对应点的像素坐标2、相机内参求解:1、n个三维点坐标2、m个摄像机的外参数R、T通过极几何我们知道本质矩阵和基础矩阵【三维重建】对极几何-CSDN博客求得了基础矩阵F,知道相机内参,就能求得本质矩阵E核心问题就在于如何从
- 人体三维重建(六)——虚拟试衣方案
计算机视觉AI
获得准确的三维人体模型通常是虚拟试衣的第一步,随后还需要合身且具有真实感的三维服装模拟。其中涉及的是人体与服装之间的交互技术以及服装建模技术(暂不考虑真实感渲染)。如图1所示。图1虚拟试衣的相关技术本次将关注一个虚拟试衣领域的热点问题,即如何高效复用现有的三维服装进行自动化服装生成、编辑或者是将其试穿到不同的三维人体身上进行服装的个性化定制。将现有工作分为基于几何优化的方法与基于数据驱动的方法,并
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,