codeforces/1312E(区间dp)

题目

这道题不管从内容还是数据范围看起来都像是区间dp,可一时想不出来怎么构造出一个满足无后效性的区间状态,看了一眼题解才顿悟。

分两步走,第一步我们求出所有的dp[l][r],表示[l,r]区间可以最终转化为的一个数,如果无法转化则为零,这一步的巧妙就在于包含了足够的信息来“总结”这个区间。第二步我们用前缀dp,设dp2[i]表示前i个元素最少合并为几个点,容易求出。

#include
using namespace std;

const int maxn=501;

int dp[maxn][maxn];
int n;
int a[maxn];
int dp2[maxn];
int main(){
    cin>>n;
    for(int i=1;i<=n;i++)
        cin>>a[i],dp[i][i]=a[i];
    for(int len=1;len<=n;len++){
        for(int i=1;i<=n-len+1;i++){
            for(int k=i;k0){
                dp2[i]=min(dp2[i],dp2[j-1]+1);
            }
        }
    }
    printf("%d\n",dp2[n]);
    return 0;
}

反思:在看到数据范围和题目内容后应该坐实区间dp,然后去想怎么样构造出符合无后效性的状态。

你可能感兴趣的:(思维,动态规划)