- 【树一线性代数】005入门
Owlet_woodBird
算法
Index本文稍后补全,推荐阅读:https://blog.csdn.net/weixin_60702024/article/details/141874376分析实现总结本文稍后补全,推荐阅读:https://blog.csdn.net/weixin_60702024/article/details/141874376已知非空二叉树T的结点值均为正整数,采用顺序存储方式保存,数据结构定义如下:t
- 如何有效的学习AI大模型?
Python程序员罗宾
学习人工智能语言模型自然语言处理架构
学习AI大模型是一个系统性的过程,涉及到多个学科的知识。以下是一些建议,帮助你更有效地学习AI大模型:基础知识储备:数学基础:学习线性代数、概率论、统计学和微积分等,这些是理解机器学习算法的数学基础。编程技能:掌握至少一种编程语言,如Python,因为大多数AI模型都是用Python实现的。理论学习:机器学习基础:了解监督学习、非监督学习、强化学习等基本概念。深度学习:学习神经网络的基本结构,如卷
- 每日小计划
小糊涂神
活到老学到老到,学习永无止境,我坚持每天学习,我的学习计划如下:1.每天学习五个英语单词,和正在学习英语的儿子共同进步,方便辅导他。2.学习一节统计学或者一节线性代数课程,在此基础上进一步学习数据的处理软件。3.每天微信步数达到1万步,每天饭后过一下二人世界,不到沟通感情,而且还能强身健体!4.学习两节税务师课件,中级会计师已经通过,距离考高级还有几年,空档期考取税务师,充实自己的专业知识。5.坚
- 深度学习算法,该如何深入,举例说明
liyy614
深度学习
深度学习算法的深入学习可以从理论和实践两个方面进行。理论上,深入理解深度学习需要掌握数学基础(如线性代数、概率论、微积分)、机器学习基础和深度学习框架原理。实践上,可以通过实现和优化深度学习模型来提升技能。理论深入数学基础线性代数:理解向量、矩阵、特征值和特征向量等,对于理解神经网络的权重和偏置矩阵至关重要。概率论:用于理解模型的不确定性,如Dropout等正则化技术。微积分:理解梯度下降等优化算
- 非理工科院校怎么打好数学建模比赛 | 南川笔记
南川笔记
Proposition1非理工科院校最好不要打数学建模比赛。虽说“一次建模,终身受益”,但毕竟数学建模既要数学理论的支撑(不仅仅是大学里的微积分、线性代数和概率论与统计,更多的是基于微积分的常偏微分方程、基于线性代数的运筹学和基于概率论与统计的统计分析内容),还要编程的支撑(不是常规的C语言或者Java程序,也不是这几年很火的Python编程,而是基于数值运算的Matlab和基于统计的R),这在一
- 【鼠鼠学AI代码合集#5】线性代数
鼠鼠龙年发大财
鼠鼠学AI系列代码合集人工智能线性代数机器学习
在前面的例子中,我们已经讨论了标量的概念,并展示了如何使用代码对标量进行基本的算术运算。接下来,我将进一步说明该过程,并解释每一步的实现。标量(Scalar)的基本操作标量是只有一个元素的数值。它可以是整数、浮点数等。通过下面的Python代码,我们可以很容易地进行标量的加法、乘法、除法和指数运算。代码实现:importtorch#定义两个标量x=torch.tensor(3.0)#标量x,值为3
- 数学基础 -- 线性代数正交多项式之勒让德多项式展开推导
sz66cm
线性代数决策树算法
勒让德多项式展开的详细过程勒让德多项式是一类在区间[−1,1][-1,1][−1,1]上正交的多项式,可以用来逼近函数。我们可以将一个函数表示为勒让德多项式的线性组合。以下是如何推导勒让德多项式展开系数ana_nan的详细过程。1.勒让德展开的基本假设给定一个函数f(x)f(x)f(x),我们希望将它表示为勒让德多项式的线性组合:f(x)=∑n=0∞anPn(x),f(x)=\sum_{n=0}^
- 线性代数基础
wq_151
mathematic线性代数
Base对于矩阵A,对齐做SVD分解,即UΣV=svd(A)U\SigmaV=svd(A)UΣV=svd(A).其中U为AATAA^TAAT的特征向量,V为ATAA^TAATA的特征向量。Σ\SigmaΣ的对角元素为降序排序的特征值。显然,U、V矩阵中的列向量相互正交,所以也可以视V为svd分解给出了A的列向量空间的正交基,其中最大奇异值(或特征值)对应的特征向量捕捉了数据变化的最大方向。求满足A
- 2022考研数学李永乐复习全书pdf版-基础篇(数一二三通用)
面包资料屋
考研数学
2022考研数学李永乐复习全书pdf版-基础篇(数一二三通用):https://pan.baidu.com/s/1tK9cPPG5Q-xhasqb051ymQ提取码:1111本书是专门为准备参加硕士研究生入学考试提前复习的大二大三学生、在职考研人士及基础薄弱的考生编写。本书以初等数学水平为起点,阐述了考研数学要求的基本知识构架。希望本书能够帮助考生在短时间内厘清考研数学(包括高等数学、线性代数、概
- 线性代数|机器学习-P33卷积神经网络ImageNet和卷积规则
取个名字真难呐
算法机器学习矩阵人工智能线性代数
文章目录1.ImageNet2.卷积计算2.1两个多项式卷积2.2函数卷积2.3循环卷积3.周期循环矩阵和非周期循环矩阵4.循环卷积特征值4.1卷积计算的分解4.2运算量4.3二维卷积公式5.KroneckerProduct1.ImageNetImageNet的论文paper链接如下:详细请直接阅读相关论文即可通过网盘分享的文件:imagenet_cvpr09.pdf链接:https://pan.
- Python的图形化界面编程
iteye_20668
Pythonpython
2017.2.14好久没有写代码了,感觉过一个年弄的什么也没有干成,好像看了下c++,突然发现现在来看C++,要简单了好多,并且指针也没有那么难了,然后就是看了下机器学习,感觉有点小难,现在发现好多都涉及到高数,概率论和线性代数的知识,想想当初把这些学的是一塌糊涂。然后上次和胡杨大大聊天的时候,他说好多东西都是在实践中去学习的。好了,继续我的Python吧,Python的图形化界面编程。impor
- matlab初等变换函数,线性代数实践及 MATLAB 入门(2005年10月)
weixin_39861905
matlab初等变换函数
出版时间:2005-10-1作者:陈怀琛,龚杰民编著出版社:电子工业出版社程序集名为dsk05,课件名bk05课件内容简介本书是根据“用软件工具提高线性代数教学”的指导思想,参照美国1992—1997国家科学基金项目ATLAST的思路,编写成的线性代数补充教材,其目的是补充我国现有教材的的缺陷。它分为两篇,第一篇介绍线性代数所用的软件工具MATLAB语言,它可以作为教材,也可以作为手册使用;第二篇
- matlab线性代数电子书,实用大众线性代数 MATLAB版_13652907.pdf
三金乐了
matlab线性代数电子书
【作者】陈怀琛著【形态项】156【出版项】西安:西安电子科技大学出版社,2014.08【ISBN号】978-7-5606-3462-3【中图法分类号】O151.2【原书定价】20.00【主题词】线性代数-计算机辅助设计-MATLAB软件【参考文献格式】陈怀琛著.实用大众线性代数MATLAB版.西安:西安电子科技大学出版社,2014.08.内容提要:传统的线性代数源于数学家,教理论不教应用。工科需要
- 数学基础 -- 线性代数之格拉姆-施密特正交化
sz66cm
线性代数机器学习人工智能
格拉姆-施密特正交化格拉姆-施密特正交化(Gram-SchmidtOrthogonalization)是一种将一组线性无关的向量转换为一组两两正交向量的算法。通过该过程,我们能够从原始向量组中构造正交基,并且可以选择归一化使得向量组成为标准正交基。算法步骤假设我们有一组线性无关的向量{v1,v2,…,vn}\{v_1,v_2,\dots,v_n\}{v1,v2,…,vn},其目标是将这些向量正交化
- Matlab初等数学与线性代数
崔渭阳
matlabmatlab线性代数数据结构
初等数学算术运算基本算术加法+添加数字,追加字符串sum数组元素总和cumsum累积和movsum移动总和A=1:5;B=cumsum(A)B=1×51361015减法-减法diff差分和近似导数乘法.*乘法*矩阵乘法prod数组元素的乘积cumprod累积乘积pagemtimes按页矩阵乘法(自R2020b起)tensorprodTensorproductsbetweentwotensors(自
- 数学基础 -- 线性代数之矩阵的迹
sz66cm
线性代数机器学习决策树
矩阵的迹什么是矩阵的迹?矩阵的迹(TraceofaMatrix)是线性代数中的一个基本概念,定义为一个方阵主对角线上元素的总和。矩阵的迹在许多数学和物理应用中都起着重要作用,例如在矩阵分析、量子力学、统计学和系统理论中。矩阵迹的定义对于一个n×nn\timesnn×n的方阵AAA:A=(a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮an1an2⋯ann)A=\begin{pmatrix}a_{1
- 线性代数 第五讲:线性方程组_齐次线性方程组_非齐次线性方程组_公共解同解方程组_详解
小徐要考研
线性代数线性代数线性方程组机器学习
线性方程组文章目录线性方程组1.齐次线性方程组的求解1.1核心要义1.2基础解系与线性无关的解向量的个数1.3计算使用举例2.非齐次线性方程的求解2.1非齐次线性方程解的判定2.2非齐次线性方程解的结构2.3计算使用举例3.公共解与同解3.1两个方程组的公共解3.2同解方程组4.方程组的应用5.重难点题型总结5.1抽象齐次线性方程组的求解5.1含有系数的非齐次线性方程组的求解及有条件求全部解问题5
- Day04-线性代数-特征值和特征向量(DataWhale)
liying_tt
数学基础线性代数
七、特征值和特征向量AAA是n阶方阵,数λ\lambdaλ,若存在非零列向量α⃗\vec{\alpha}α,使得Aα⃗=λα⃗A\vec{\alpha}=\lambda\vec{\alpha}Aα=λα,则λ\lambdaλ是特征值,α⃗\vec{\alpha}α是对应于λ\lambdaλ的特征向量λ\lambdaλ可以为0α⃗\vec{\alpha}α不能为0⃗\vec{0}0,且为列向量Aα⃗
- 人工智能中的线性代数与矩阵论学习秘诀之著名教材
audyxiao001
人工智能怎么学人工智能线性代数矩阵学习方法
线性代数是大学数学中非常核心的基础课程,教材繁多,国内外有许多经典的教材。国内比较有名且使用较为广泛的线性代数中文教材见书籍8。书籍8线性代数中文教材推荐:(a)简明线性代数(丘维声);(b)线性代数(居于马);(c)线性代数(李尚志);(d)线性代数(李炯生等);(e)线性代数五讲(龚昇);(f)线性代数的几何意义(任广千等)北京大学的丘维声教授编写的《简明线性代数》[17]是北京市高等教育精品
- 数学基础 -- 线性代数之矩阵正定性
sz66cm
线性代数矩阵
线性代数中的正定性正定性在线性代数中主要用于描述矩阵的特性,尤其是在二次型与优化问题中有重要应用。正定矩阵的定义对于一个n×nn\timesnn×n的对称矩阵AAA,其正定性可以通过以下条件来判断:正定矩阵:如果对于任意非零向量x∈Rnx\in\mathbb{R}^nx∈Rn,二次型xTAxx^TAxxTAx都是正的,即:xTAx>0∀x∈Rn,x≠0x^TAx>0\quad\forallx\in
- 线性代数笔记【二次型】
内 鬼
微电子专业笔记线性代数矩阵
二次型n元二次型:关于n个变量x1,x2,⋯ ,xnx_1,x_2,\cdots,x_nx1,x2,⋯,xn的二次齐次函数KaTeXparseerror:Nosuchenvironment:align*atposition8:\begin{̲a̲l̲i̲g̲n̲*̲}̲f(x_1,x_2,\cdo…系数全为实数的二次型叫做实二次型,除此之外还有复二次型和复二次型矩阵,但在这里不讨论标准二次型:只含
- MIT线性代数
模拟IC和AI的Learner
线性代数线性代数机器学习算法
P5置换矩阵置换矩阵是行重新排列的单位矩阵。置换矩阵用P表示,性质:n阶置换矩阵共有n!个P6零空间某个矩阵的零空间中的向量经过该矩阵的变换后都落在0向量,
- MIT线性代数
模拟IC和AI的Learner
线性代数
本文链接的原创作者为浊酒南街https://blog.csdn.net/weixin_43597208第1讲MIT_线性代数笔记:第01讲行图像和列图像-CSDN博客第2讲MIT_线性代数笔记:第02讲矩阵消元_矩阵firstpivot-CSDN博客第3讲MIT_线性代数笔记:第03讲矩阵的乘法和逆矩阵_矩阵行乘列和列乘行-CSDN博客第4讲MIT_线性代数笔记:第04讲矩阵的LU分解-CSDN博
- 从零开始学数据分析之——《线性代数》第六章 二次型
doubleyue1314
线性代数数据分析数据挖掘算法
6.1二次型与对称矩阵6.1.1二次型及其矩阵定义:n个变量的二次齐次函数称为的一个n元二次型,简称为二次型二次型转换为矩阵表达式:1)平方项的系数直接作为主对角元素2)交叉项的系数除以2放两个对称的相应位置上二次型的矩阵一定是对称的二次型的标准形对应的矩阵是一个对角形矩阵,其秩为主对角线上非零元的个数矩阵表达式写为二次型:1)主对角线元素直接作为平方项的系数2)取主线右上角元素乘以2作为交叉项系
- 线性代数学习笔记8-4:正定矩阵、二次型的几何意义、配方法与消元法的联系、最小二乘法与半正定矩阵A^T A
Insomnia_X
线性代数学习笔记线性代数矩阵学习
正定矩阵Positivedefinitematrice之前说过,正定矩阵是一类特殊的对称矩阵:正定矩阵满足对称矩阵的特性(特征值为实数并且拥有一套正交特征向量、正/负主元的数目等于正/负特征值的数目)另外,正定矩阵还具有更好的性质(所有特征值都为正实数、所有主元都为正实数、左上角的所有任意k阶(10(x≠0)\mathbf{x}^{T}\boldsymbol{A}\mathbf{x}>0\quad
- LU分解算法(串行、并行)
清榎
高性能计算并行程序高性能计算数值分析
一、串行LU分解算法(详细见MIT线性代数)1.LU分解矩阵分解LU分解分解形式L(下三角矩阵)、U(上三角矩阵)目的提高计算效率前提(1)矩阵A为方阵;(2)矩阵可逆(满秩矩阵);(3)消元过程中没有0主元出现,也就是消元过程中不能出现行交换的初等变换LU分解其实就是将线性方程组:Ax=bAx=bAx=b分解为:LUx=bLUx=bLUx=b这样一来就会有:{Ly=bUx=y\begin{cas
- 线性代数 --- LU分解(Gauss消元法的矩阵表示)
松下J27
LinearAlgebra线性代数矩阵LU分解高斯消元矩阵运行gaussianLU
Gauss消元法等价于把系数矩阵A分解成两个三角矩阵L和U的乘法首先,LU分解实际上就是用矩阵的形式来记录的高斯消元的过程。其中,对矩阵A进行高斯消元后的结果为矩阵U,是LU分解后的两个三角矩阵中其中之一。U是一个上三角矩阵,U就是上三角矩阵uppertriangle的首字母的大写。高斯消元的每一步都能用基本消元矩阵E来表示。而所有的E都可以收录在一个矩阵当中,我这里叫他Z矩阵。Z矩阵就是集所有基
- Python NumPy 库详解
寒秋丶
Pythonpythonnumpy开发语言测试开发数据分析数据挖掘软件测试
大家好,在当今数据驱动的世界中,处理大规模数据、进行复杂数值计算是科学研究、工程设计以及数据分析的关键任务之一。在Python生态系统中,NumPy(NumericalPython)库是一款备受推崇的工具,它为我们提供了高效的数组操作、数学函数以及线性代数运算等功能,成为了科学计算和数据处理的利器。一、介绍NumPyNumPy(NumericalPython)是Python中一个开源的数值计算库,
- 【机器人工具箱Robotics Toolbox开发笔记(一)】Matlab机器人工具箱简介
DRobot
机器人工具箱RoboticsToolbox开发笔记机器人笔记matlab
MATLAB是一款被广泛应用于科学计算和工程领域的专业软件。它的全称为MatrixLaboratory(矩阵实验室),因为其最基本的数据类型就是矢量与矩阵,所以在处理数学和科学问题时非常方便,可用于线性代数计算、图形和动态仿真的高级技术计算语言和交互式环境以及解决机器人学的相关问题。MATLAB的RoboticsToolbox(简称RTB)是一款在MATLAB环境下进行机器人建模、仿真和控制的工具
- 线性代数——特征值与特征向量的性质
lwh 98+106
线性代数算法机器学习
(1)设A为方阵,则A与ATA^{T}AT有相同的特征值。此处用到了两个关键性质,一:单位阵的转置为其本身,二:转置并不改变行列式的值。(2):设n阶方阵A=(aija_{ij}aij)的n个特征值为λ1\lambda_{1}λ1,λ2\lambda_{2}λ2,…λn\lambda_{n}λn,则λ1+λ2+λ3+...λn=a11+a22+a33+...+ann\lambda_{1}+\lam
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在