Redis开发与运维读书笔记-第五章-持久化

Redis支持RDB和AOF两种持久化机制,持久化功能有效地避免因进程退出造成的数据丢失问题,当下次重启时利用之前持久化的文件即可实现数据恢复.

一.RDB

RDB持久化是把当前进程数据生成快照保存到硬盘的过程,触发RDB持久化过程分为手动触发和自动触发
1 触发机制
手动触发采用bgsave命令:

·bgsave命令:Redis进程执行fork操作创建子进程,RDB持久化过程由子 进程负责,完成后自动结束。阻塞只发生在fork阶段,一般时间很短。运行 bgsave命令对应的Redis日志如下:

* Background saving started by pid 3151 
* DB saved on disk 
* RDB: 0 MB of memory used by copy-on-write 
* Background saving terminated with success

除了执行命令手动触发之外,Redis内部还存在自动触发RDB的持久化机制,例如以下场景
1)使用save相关配置,如“save m n”。表示m秒内数据集存在n次修改 时,自动触发bgsave。
2)如果从节点执行全量复制操作,主节点自动执行bgsave生成RDB文件并发送给从节点
3)执行debug reload命令重新加载Redis时,也会自动触发save操作。
4)默认情况下执行shutdown命令时,如果没有开启AOF持久化功能则 自动执行bgsave。

2.流程说明

bgsave是主流的触发RDB持久化方式,下图展示了它的运作流程。

Redis开发与运维读书笔记-第五章-持久化_第1张图片

1)执行bgsave命令,Redis父进程判断当前是否存在正在执行的子进 程,如RDB/AOF子进程,如果存在bgsave命令直接返回。
2)父进程执行fork操作创建子进程,fork操作过程中父进程会阻塞,通 过info stats命令查看latest_fork_usec选项,可以获取最近一个fork操作的耗时,单位为微秒。
3)父进程fork完成后,bgsave命令返回“Background saving started”信息并不再阻塞父进程,可以继续响应其他命令。
4)子进程创建RDB文件,根据父进程内存生成临时快照文件,完成后 对原有文件进行原子替换。执行lastsave命令可以获取最后一次生成RDB的 时间,对应info统计的rdb_last_save_time选项。
5)进程发送信号给父进程表示完成,父进程更新统计信息,具体见 info Persistence下的rdb_*相关选项。

3 RDB文件的处理

保存:RDB文件保存在dir配置指定的目录下,文件名通过dbfilename配 置指定。可以通过执行config set dir{newDir}和config set dbfilename{newFileName}运行期动态执行,当下次运行时RDB文件会保存到新目录。
压缩:Redis默认采用LZF算法对生成的RDB文件做压缩处理,压缩后的 文件远远小于内存大小,默认开启,可以通过参数config set rdbcompression{yes|no}动态修改
校验:如果Redis加载损坏的RDB文件时拒绝启动,并打印如下日志:

# Short read or OOM loading DB. Unrecoverable error, aborting now.

这时可以使用Redis提供的redis-check-dump工具检测RDB文件并获取对应的错误报告。

4 RDB的优缺点

RDB的优点:
·RDB是一个紧凑压缩的二进制文件,代表Redis在某个时间点上的数据 快照。非常适用于备份,全量复制等场景。比如每6小时执行bgsave备份, 并把RDB文件拷贝到远程机器或者文件系统中(如hdfs),用于灾难恢复。
·Redis加载RDB恢复数据远远快于AOF的方式。
RDB的缺点:

·RDB方式数据没办法做到实时持久化/秒级持久化。因为bgsave每次运 行都要执行fork操作创建子进程,属于重量级操作,频繁执行成本过高。
·RDB文件使用特定二进制格式保存,Redis版本演进过程中有多个格式 的RDB版本,存在老版本Redis服务无法兼容新版RDB格式的问题。
针对RDB不适合实时持久化的问题,Redis提供了AOF持久化方式来解决。
 

二.AOF

AOF(append only file)持久化:以独立日志的方式记录每次写命令, 重启时再重新执行AOF文件中的命令达到恢复数据的目的。AOF的主要作用 是解决了数据持久化的实时性,目前已经是Redis持久化的主流方式

1 使用AOF

开启AOF功能需要设置配置:appendonly yes,默认不开启。AOF文件名 通过appendfilename配置设置,默认文件名是appendonly.aof。保存路径同 RDB持久化方式一致,通过dir配置指定。AOF的工作流程操作:命令写入 (append)、文件同步(sync)、文件重写(rewrite)、重启加载 (load),如下图所示。

Redis开发与运维读书笔记-第五章-持久化_第2张图片

流程如下:

1)所有的写入命令会追加到aof_buf(缓冲区)中。
2)AOF缓冲区根据对应的策略向硬盘做同步操作。
3)随着AOF文件越来越大,需要定期对AOF文件进行重写,达到压缩的目的。
4)当Redis服务器重启时,可以加载AOF文件进行数据恢复。

下面针对每个步骤做详细介绍:

命令写入:
AOF命令写入的内容直接是文本协议格式。例如set hello world这条命 令,在AOF缓冲区会追加如下文本:

*3\r\n$3\r\nset\r\n$5\r\nhello\r\n$5\r\nworld\r\n

1)AOF为什么直接采用文本协议格式?可能的理由如下:
·文本协议具有很好的兼容性。
·开启AOF后,所有写入命令都包含追加操作,直接采用协议格式,避免了二次处理开销。
·文本协议具有可读性,方便直接修改和处理。
2)AOF为什么把命令追加到aof_buf中?
Redis使用单线程响应命令,如 果每次写AOF文件命令都直接追加到硬盘,那么性能完全取决于当前硬盘负 载。先写入缓冲区aof_buf中,还有另一个好处,Redis可以提供多种缓冲区同步硬盘的策略,在性能和安全性方面做出平衡。

文件同步:

Redis提供了多种AOF缓冲区同步文件策略,由参数appendfsync控制, 不同值的含义如下表所示。

AOF缓冲区同步文件策略
可配置值 说明
always 命令写入aof_buf后调用系统fsync操作同步到AOF文件,fsync完成后线程返回
everysec 命令写入aof_buf后调用系统write操作,write完成后线程返回.fsync同步文件操作由专门线程每秒调用一次
no 命令写入aof_buf后调用系统write操作,不对AOF文件做fsync同步,同步硬盘操作由操作系统负责,通常同步周期最长30秒

系统调用write和fsync说明:
·write操作会触发延迟写(delayed write)机制。Linux在内核提供页缓 冲区用来提高硬盘IO性能。write操作在写入系统缓冲区后直接返回。同步硬盘操作依赖于系统调度机制,例如:缓冲区页空间写满或达到特定时间周期。同步文件之前,如果此时系统故障宕机,缓冲区内数据将丢失。
·fsync针对单个文件操作(比如AOF文件),做强制硬盘同步,fsync将阻塞直到写入硬盘完成后返回,保证了数据持久化。
·配置为always时,每次写入都要同步AOF文件,在一般的SATA硬盘 上,Redis只能支持大约几百TPS写入,显然跟Redis高性能特性背道而驰,不建议配置。
·配置为no,由于操作系统每次同步AOF文件的周期不可控,而且会加大每次同步硬盘的数据量,虽然提升了性能,但数据安全性无法保证。
·配置为everysec,是建议的同步策略,也是默认配置,做到兼顾性能和 数据安全性。理论上只有在系统突然宕机的情况下丢失1秒的数据

重写机制

随着命令不断写入AOF,文件会越来越大,为了解决这个问题,Redis 引入AOF重写机制压缩文件体积。AOF文件重写是把Redis进程内的数据转 化为写命令同步到新AOF文件的过程。

重写后的AOF文件为什么可以变小?有如下原因:
1)进程内已经超时的数据不再写入文件。
2)旧的AOF文件含有无效命令,如del key1、hdel key2、srem keys、set a111、set a222等。重写使用进程内数据直接生成,这样新的AOF文件只保留最终数据的写入命令。
3)多条写命令可以合并为一个,如:lpush list a、lpush list b、lpush list c可以转化为:lpush list a b c。为了防止单条命令过大造成客户端缓冲区溢出,对于list、set、hash、zset等类型操作,以64个元素为界拆分为多条。
AOF重写降低了文件占用空间,除此之外,另一个目的是:更小的AOF 文件可以更快地被Redis加载。
AOF重写过程可以手动触发和自动触发:
·手动触发:直接调用bgrewriteaof命令。
·自动触发:根据auto-aof-rewrite-min-size和auto-aof-rewrite-percentage参数确定自动触发时机。
·auto-aof-rewrite-min-size:表示运行AOF重写时文件最小体积,默认 为64MB。
·auto-aof-rewrite-percentage:代表当前AOF文件空间 (aof_current_size)和上一次重写后AOF文件空间(aof_base_size)的比值。
自动触发时机=aof_current_size>auto-aof-rewrite-minsize&&(aof_current_size-aof_base_size)/aof_base_size>=auto-aof-rewritepercentage,其中aof_current_size和aof_base_size可以在info Persistence统计信息中查看。
当触发AOF重写时,内部做了哪些事呢?结合下图介绍它的运行流程。

Redis开发与运维读书笔记-第五章-持久化_第3张图片

流程说明:
1)执行AOF重写请求。
如果当前进程正在执行AOF重写,请求不执行并返回如下响应:

ERR Background append only file rewriting already in progress

如果当前进程正在执行bgsave操作,重写命令延迟到bgsave完成之后再执行,返回如下响应:

Background append only file rewriting scheduled

2)父进程执行fork创建子进程,开销等同于bgsave过程。
3.1)主进程fork操作完成后,继续响应其他命令。所有修改命令依然写 入AOF缓冲区并根据appendfsync策略同步到硬盘,保证原有AOF机制正确性。
3.2)由于fork操作运用写时复制技术,子进程只能共享fork操作时的内 存数据。由于父进程依然响应命令,Redis使用“AOF重写缓冲区”保存这部 分新数据,防止新AOF文件生成期间丢失这部分数据。
4)子进程根据内存快照,按照命令合并规则写入到新的AOF文件。每 次批量写入硬盘数据量由配置aof-rewrite-incremental-fsync控制,默认为 32MB,防止单次刷盘数据过多造成硬盘阻塞。
5.1)新AOF文件写入完成后,子进程发送信号给父进程,父进程更新 统计信息,具体见info persistence下的aof_*相关统计。
5.2)父进程把AOF重写缓冲区的数据写入到新的AOF文件。
5.3)使用新AOF文件替换老文件,完成AOF重写。

重启加载

AOF和RDB文件都可以用于服务器重启时的数据恢复,下图表示Redis持久化文件加载流程。

Redis开发与运维读书笔记-第五章-持久化_第4张图片

流程说明:
1)AOF持久化开启且存在AOF文件时,优先加载AOF文件,打印如下日志:

* DB loaded from append only file: 5.841 seconds

2)AOF关闭或者AOF文件不存在时,加载RDB文件,打印如下日志:

* DB loaded from disk: 5.586 seconds

3)加载AOF/RDB文件成功后,Redis启动成功。
4)AOF/RDB文件存在错误时,Redis启动失败并打印错误信息。

文件校验
加载损坏的AOF文件时会拒绝启动,并打印如下日志:

# Bad file format reading the append only file: make a backup of your AOF file,     then use ./redis-check-aof --fix 

AOF文件可能存在结尾不完整的情况,比如机器突然掉电导致AOF尾部 文件命令写入不全。Redis为我们提供了aof-load-truncated配置来兼容这种情 况,默认开启。加载AOF时,当遇到此问题时会忽略并继续启动,同时打印如下警告日志:

# !!! Warning: short read while loading the AOF file !!! # !!! Truncating the AOF at offset 397856725 !!! # AOF loaded anyway because aof-load-truncated is enabled

小结:

1)Redis提供了两种持久化方式:RDB和AOF。
2)RDB使用一次性生成内存快照的方式,产生的文件紧凑压缩比更 高,因此读取RDB恢复速度更快。由于每次生成RDB开销较大,无法做到实时持久化,一般用于数据冷备和复制传输。
3)save命令会阻塞主线程不建议使用,bgsave命令通过fork操作创建子 进程生成RDB避免阻塞。
4)AOF通过追加写命令到文件实现持久化,通过appendfsync参数可以 控制实时/秒级持久化。因为需要不断追加写命令,所以AOF文件体积逐渐变大,需要定期执行重写操作来降低文件体积。
5)AOF重写可以通过auto-aof-rewrite-min-size和auto-aof-rewritepercentage参数控制自动触发,也可以使用bgrewriteaof命令手动触发。
6)子进程执行期间使用copy-on-write机制与父进程共享内存,避免内 存消耗翻倍。AOF重写期间还需要维护重写缓冲区,保存新的写入命令避免数据丢失。

你可能感兴趣的:(读书笔记)